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Dispersion for the wave equation
inside strictly convex domains I:

the Friedlander model case

By Oana Ivanovici, Gilles Lebeau, and Fabrice Planchon

Abstract

We consider a model case for a strictly convex domain ⌦ ⇢ Rd
of dimen-

sion d � 2 with smooth boundary @⌦ 6= ;, and we describe dispersion for

the wave equation with Dirichlet boundary conditions. More specifically,

we obtain the optimal fixed time decay rate for the smoothed out Green

function: a t1/4 loss occurs with respect to the boundary less case, due to

repeated occurrences of swallowtail type singularities in the wave front set.

1. Introduction

Let us consider solutions of the linear wave equation on a manifold (⌦, g),
with (possibly empty) boundary @⌦:

(1.1)

8
>><

>>:

(@2t ��g)u(t, x) = 0, x 2 ⌦,
u(0, x) = u0(x), @tu(0, x) = u1(x),

u(t, x) = 0, x 2 @⌦,

where �g denotes the Laplace-Beltrami operator on ⌦.
When dealing with the Cauchy problem for nonlinear wave equations, one

starts with perturbative techniques and faces the di�culty of controlling the
size of solutions to the linear equation in terms of the size of the initial data. Of
course, one has to quantify this notion of size by specifying a suitable (space-
time) norm. It turns out that, especially at low regularities, mixed norms of
type Lp

tL
q
x are particularly useful. Moreover, the arguments leading to such

estimates turn out to be useful when considering spectral cluster estimates,
which are of independent interest (see [18]).
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On any smooth Riemannian manifold without boundary, the following set
of so-called Strichartz estimates holds for solutions of the wave equation (1.1)
(for T < 1),

(1.2) kukLq(0,T )Lr(⌦)  CT

Ä
||u0||Ḣ�(⌦) + ||u1||Ḣ��1(⌦)

ä
,

where, if d denotes the dimension of the manifold, we have �=d(12�
1
r )�

1
q (which

is consistent with scaling) and where the pair (q, r) is wave-admissible; i.e.,

(1.3) q � 2,
2

q
+

d� 1

r
 d� 1

2
(q > 2 if d = 3 and q � 4 if d = 2).

When equality holds in (1.3) we say that the pair (q,r) is sharp wave-admissible.
Here Ḣ� denotes the (homogeneous) L2 Sobolev space over ⌦. Such inequali-
ties were long ago established for Minkowski space, where they hold globally in
time (T = +1). Their local in time version may be generalized to any (⌦, g)
where g is smooth (thanks to the finite speed of propagation), while global in
time estimates require stronger geometric requirements of global nature on the
metric.

The canonical path leading to such Strichartz estimates is to obtain a
stronger, fixed time, dispersion estimate, which is then combined with energy
conservation, interpolation and TT ? arguments to obtain (1.2). Let us denote

by e±it
p

��Rd the half-wave propagators in flat space, and  2 C1
0 (]0,1[).

The following dispersion inequality holds:

(1.4) k (�h2�Rd)e±it
p

��RdkL1(Rd)!L1(Rd)  C(d)h�dmin
n
1, (h/|t|)

d�1
2

o
.

Our aim in the present paper is to obtain these estimates inside domains.
In fact, [11] outlines a roadmap to prove such a dispersion estimate, on a
finite time interval, for solutions of (1.1) inside a strictly convex domain (⌦, g)
of dimension d � 2. A complete description of the geometry of the (semi-
classical) wave front set is provided for the solution to (1.1) with initial data
(u0, u1) = (�a, 0), where a 2 ⌦ is a point su�ciently close to the boundary
(depending on the scale h). This wave front set has caustics developing in
arbitrarily small times, and this induces a loss of 1/4 in (1.4) for the h/|t| factor.

In the present work, we aim at completing the roadmap by construct-
ing a suitable parametrix for such a solution and then proving dispersion for
the approximated solution. It should be noted that parametrices have been
available for the boundary value problem for a long time (see [13], [12], [5])
as a crucial tool to establish propagation of singularities for the wave equa-
tion on domains. However, while e�cient at proving that singularities travel
along the (generalized) bi-characteristic flow, they do not seem strong enough
to obtain dispersion, at least in the presence of gliding rays. In the outside
of a strictly convex obstacle (no gliding rays), the Melrose-Taylor parametrix
was utilized in [17] to prove Strichartz estimates hold as in the Rd case. All
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other positive results ([3] and references therein) rely instead on reflecting the
metric across the boundary and considering a boundary less manifold with a
Lipschitz metric across an interface, and then using the machinery originally
developed for low regularity metrics [16], [20] and spectral cluster estimates
[18]. Such constructions do away with multiply reflected rays by suitable mi-
crolocalizations: one ends up working on a possibly very small time interval,
depending on the incidence of the wave packet under consideration, such that
all corresponding rays are only reflected once. Summing these intervals induces
(scale-invariant) losses, which get worse with dimension; while Strichartz es-
timates are obtained in a more direct way in [3], one can observe that the
corresponding dispersion estimate would have at most 1/t decay for d � 4,
as the argument is blind to the full dispersion that should occur in tangential
directions. On the other hand, negative results were obtained in [7], [8], where
a special solution is constructed, propagating a cusp across multiple reflections
and providing a counterexample to the sharp Strichartz estimates (1.2) for
r > 4. This special solution is constructed via a microlocal parametrix that
utilizes the Melrose one, and our present construction generalizes this special
example while retaining most of its useful features.

Before stating our main result, we briefly introduce the Friedlander’s
model domain of the half-space ⌦d = {(x, y)|x > 0, y 2 Rd�1} with Laplace
operator given by

�g = @2x + (1 + x)�y.

By rotational symmetry, we will eventually reduce to the two-dimensional
case ⌦2.

Remark 1.1. For the metric g = dx2+(1+x)�1dy2, the Laplace-Beltrami
operator is 4g,0 = (1 + x)1/2@x(1 + x)�1/2@x + (1 + x)�y, which is self-
adjoint with the volume form

p
detg dxdy = (1 + x)�1/2dxdy. The Fried-

lander’s model uses instead the Laplace operator associated to the Dirichlet
form

R
|rgu|2 dxdy =

R
(|@xu|2 + (1 + x)|@yu|2)dxdy and is self-adjoint with

volume form dxdy. As a model, the Friedlander operator �g is better than
the Laplacian �g,0 since it allows explicit computations. Clearly, manifold
(⌦d, g) is a strictly convex domain: In fact, on the geodesic flow starting at
x = 0, y = y0, ⇠20 + ⌘20 = 1, ⇠0 2]0, 1[, one has x(s) = 2s⇠0 � s2⌘20. Moreover,
(⌦2, g) may be seen as a simplified model for the disk D(0, 1) with polar co-
ordinates (r, ✓), where r = 1 � x/2 and ✓ = y. Multiply reflected light rays
become periodic curves in the y variable, as illustrated in Figure 1.1.

Remark 1.2. We will always work with the Dirichlet boundary condition.
The Neumann boundary condition can be handled exactly in the same way,
providing the same results: one simply modifies the reflexion coe�cient in our
parametrix construction and replaces zeros of the Airy function Ai by zeros of
its derivative Ai0.
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Disk

Model domain

Figure 1.1. Light rays in the Friedlander model.

We are now in a position to state our main result.

Theorem 1.3. Let d � 2. There exists C > 0, T0 > 0 such that for
every a 2]0, 1], h 2 (0, 1] and t 2 (0, T0], the solution ua to (1.1) with data
(u0, u1) = (�a, 0), where �a is the Dirac mass at point (a, 0, · · · , 0) 2 ⌦d,
satisfies

(1.5) | (�h24g)ua(t, x)|  Ch�dmin
⇣
1, (h/t)

d�2
2 + 1

4

⌘
.

The dispersion estimate (1.5) may be compared to (1.4): we notice a 1/4
loss in the h/t exponent, which we may informally relate to the presence of
caustics in arbitrarily small times if a is small. Such caustics occur because
optical rays are no longer diverging from each other in the normal direction,
where less dispersion occurs as compared to the Rd case. In fact, we will prove
a slightly better estimate than (1.5): the (h/t)1/4 factor may be replaced by
h1/4 + (h/t)1/3 for a  h1/2 (Proposition 3.4) and by (h/t)1/2 + a1/8h1/4 for
a � h4/7�" (Theorem 2.1). In fact, we can track the caustics, and therefore
our estimate is optimal for a � h4/7�".

Theorem 1.4. Let d � 2 and ua be the solution to (1.1) with data
(u0, u1) = (�a, 0). Let h 2 (0, 1] and a � h4/7�". There exist a constant C > 0
and a finite sequence (tn)n, 1  n  min(a�1/2, a1/2h�1/3) with tn ⇠ 4n

p
a

such that

(1.6) h�d(h/tn)
d�2
2 n�1/4a

1
8h1/4⇠a

1
4h�d(h/tn)

d�2
2 + 1

4 . | (�h24g)ua(tn, a)|.

As a byproduct, we get that even for t 2]0, T0] with T0 small, the 1/4 loss
is unavoidable for a comparatively small to T0 and independent of h. We will
see soon that this optimal loss is due to swallowtail type singularities in the
wave front set of ua.

Remark 1.5. Note that when a = h� , where we gain from the factor a1/8,
the loss in (1.6) is still greater than the usual dispersive estimate in the flat
case: this requires � > 2/3 whereas we have � > 4/7 � ". Moreover, in this
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range, the loss is also greater than the loss that would occur if we had only
cusp singularities.

Remark 1.6. It follows from our proof that Theorems 1.3 and 1.4 hold

true if one replaces  (�h24g)ua(t, x) by  (hDt)e
±it

p
�4g�x=a,y=0 with  2

C1
0 (R⇤).

As a consequence of (1.5) and classical arguments, we obtain the following
set of Strichartz estimates.

Theorem 1.7. Let u be a solution of (1.1) on the model domain ⌦d,
d � 2. Then there exists T such that

kukLq(0,T )Lr(⌦)  CT

Ä
||u0||Ḣ�(⌦) + ||u1||Ḣ��1(⌦)

ä

for (d, q, r) satisfying

1

q

Å
d� 2

2
+

1

4

ãÅ
1

2
� 1

r

ã
,

and � is dictated by scaling.

In dimension d = 2 the known range of admissible indices for which sharp
Strichartz hold is in fact slightly larger; see [3]. However, in larger dimensions
d � 3, Theorem 1.7 improves the range of indices for which sharp Strichartz
do hold, and it does so in a uniform way with respect to dimension, in contrast
to [3]. On the other hand, our results are, for now, restricted to a model case
of strictly convex domain, while [3] applies to any domain. One may use the
model case analysis to extend estimates to any smooth strictly convex domain,
as in the counterexample situation [8]. This issue will be addressed elsewhere.

Remark 1.8. One conjectures that the loss in Strichartz estimates in [7] are
optimal. This would heuristically match a 1/6 loss in the dispersion estimate.
We plan to address this issue in future work, by proving that the worst time-
space points (tn, a) may be suitably averaged over.

One may then make good use of such Strichartz estimates for the local
(and global) Cauchy theory of nonlinear wave equations. We provide one
simple example.

Theorem 1.9. The energy critical wave equation 2gu+ |u|
4

d�2u = 0 with
data (u0, u1) 2 H1

0 (⌦d) ⇥ L2(⌦d) has unique global in time solutions for 3 
d  6.

In the small data case, the result follows directly from the previously
obtained set of Strichartz estimates. Appendix A provides details on how to
combine these new estimates with arguments from [4] to obtain the large data
case.
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1.1. Light propagation, heuristics and degenerate oscillatory integrals. In
[11] the second author sketched the main steps of a proof of (1.5) and gave a
full description of the geometry of the wave front set. In this work, we provide
a complete construction of a suitable parametrix for the wave equation, which
we then utilize to obtain decay estimates by (degenerate) stationary phases.

Recall that, at time t > 0, one expects the wave propagating from the
source of light to be highly concentrated around the sphere of radius t. For a
variable coe�cients metric, one can make good of this heuristic as long as two
di↵erent light rays emanating from the source do not cross: in other words,
as long as t is smaller than the injectivity radius. One may then construct
parametrices using oscillatory integrals, where the phase encodes the geometry
of the wave front.

In our situation, the geometry of the wave front becomes singular in arbi-
trarily small times, depending on the frequency of the source and its distance
to the boundary. In fact, a caustic appears right between the first and the
second reflexion of the wave front, as illustrated in Figures 1.3 and 1.4 (which
is a zoomed version at the relevant time scale). Therefore, we are to investi-
gate concentration phenomena (“caustics”) that may occur near the boundary.
Geometrically, caustics are defined as envelopes of light rays coming from our
source of light. Each ray is tangent to the caustic at a given point. If one
assigns a direction on the caustic, it induces a direction on each ray. Each
point outside the caustic (and in the sunny side of the caustic) lies on a ray
that has left the caustic and also lies on a ray approaching the caustic. Each
curve of constant phase has a cusp where it meets the caustic.

At the caustic point we expect light to be singularly intense. Analytically,
caustics can be characterized as points were usual bounds on oscillatory inte-
grals are no longer valid. Oscillatory integrals with caustics have enjoyed much
attention: their asymptotic behavior is known to be driven by the number and
the order of those of their critical points that are real. Let us consider an
oscillatory integral

(1.7) uh(z) =
1

(2⇡h)1/2

Z

⇣
e

i
h�(z,⇣)g(z, ⇣, h)d⇣, z 2 Rd, ⇣ 2 R, h 2 (0, 1].

We assume that � is smooth and that g(., h) is compactly supported in z and
in ⇣. If there are no critical points of the map ⇣ ! �(z, ⇣), so that @⇣� 6= 0
everywhere in an open neighborhood of the support of g(., h), then repeated
integration by parts (i.e., nonstationary phase) yields that |uh(z)| = O(hN )
for any N > 0.

If there are nondegenerate critical points, where @⇣� = 0 but det(@2⇣j⇣k�)

6= 0, then the method of stationary phase applies and yields kuh(z)kL1 = O(1).
The corresponding canonical form is a Gaussian phase.
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Figure 1.2. The caustic for the swallowtail catastrophe.

If there are degenerate critical points, we define them to be caustics, as
kuh(z)kL1 is no longer uniformly bounded. The order of a caustic  is defined
as the infimum of 0 such that kuh(z)kL1 = O(h�

0
).

The most simple degenerate phase beyond the Gaussian is �F (z, ⇣) =
⇣3

3 +z1⇣+z2, which corresponds to a fold with order  = 1
6 . A typical example

is the Airy function. The caustic is given by z1 = 0, and the illuminated side
is z1 < 0. The next canonical form is given by a phase function that is a

polynomial of degree 4, namely �C(z, ⇣) =
⇣4

4 + z1
⇣2

2 + z2⇣ + z3 whose order
is  = 1

4 ; its associated integral is called Pearcey’s function, and it produces a
cusp singularity on the caustic that is parametrized by z1 = �3s2, z2 = 2s3.

Finally, we conclude this brief overview with the swallowtail integral (which
is an oscillatory integral with four coalescing saddle points) whose canonical

form is given by a polynomial of degree 5, �S(z, ⇣) =
⇣5

5 +z1
⇣3

3 +z2
⇣2

2 +z3⇣+z4:
the caustic surface of the swallowtail is defined by the condition that two or
more real saddle points are equal: it is pictured on Figure 1.2. In the event that
two simple saddle points undergo confluence when z ! z0, then the uniform
asymptotic behavior of (1.7) contains terms involving the Airy function and

its derivatives multiplied by powers of h�
1
2+

1
3 ; the caustic surface is smooth

(z1 < 0 on the figure). If three simple saddles coalesce as z ! z0, then the
uniform asymptotic behavior of (1.7) can be described by terms containing the
Pearcey function and its first-order derivatives, each multiplied by a power of

h�
1
2+

1
4 ; the caustic surface has cusps (two of them in the z1 > 0 region on the

figure). The swallowtail enters the picture when four simple saddle points of
(1.7) undergo confluence as z ! z0 (which is z0 = 0 on the figure). We refer to
[1] for a very nice presentation, both from the mathematical and the physical
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point of view, of degenerate oscillatory integrals and their relation to Thom’s
theory of catastrophes.

Such integrals will play a crucial role in the proof of Theorem 1.3. Between
two consecutive reflections of the wave propagating along the boundary, we
shall construct a parametrix of the form

u(z, h) =
1

h2

Z

R2
e

i
h�(z,⇣,⌘)g(z, ⌘, ⇣, h) d⇣d⌘,

where the phase is essentially �(z, ⇣, ⌘) ⇡ ⌘�C(z, ⇣), with z = (t, x, y), ⌘/h is
the Fourier variable associated to the tangential variable y and ⇣ = ⇠/⌘ where
⇠/h is the Fourier variable associated to the normal variable x. Note that we
may restrict to ⌘ 2 (1/2, 2), which corresponds precisely to waves propagating
along the boundary and explains the (⌘, ⇣) parametrization for the oscillatory
integral. For a particular value zS of z = (t, x, y), this phase will have a saddle
point of order 4; it corresponds to @⌘� = 0 = �C(zS , ⇣) and @⇣�C = @2⇣�C =

@3⇣�C = 0. The geometric picture is that of a swallowtail singularity, but the

decay loss is that of the Pearcey’s integral, i.e., h1/4. For z 6= zS , our oscillatory
integral will have only critical points of order at most 3, corresponding to
@⌘� = 0 = �C(zS , ⇣) and @⇣�C = @2⇣�C = 0: the picture is, at worst, that of

cusps and the loss is that of the Airy function, i.e., h1/6. Finally, we notice
that Figures 1.2 and 1.4 picture the same singularity formation: in Figure 1.2,
up to translations, z1 = t, z2 = �x and z3 = y; z1 < 0 corresponds to the
(smooth) refocusing wave front in the left part of Figure 1.4 while two cusps
form on the right part after the swallowtail singularity.

1.2. An outline of the proof. Let us mention the main ideas of the proof
of Theorem 1.3. First, we may reduce to the two-dimensional case, as the
tangential directions will produce the usual decay factor when we integrate
them out; see Section 4.

Let h 2 (0, 1] be a small parameter (1/h will later be the spectral fre-
quency) and 0 < a ⌧ 1 the distance of the source to the boundary. We
assume a to be small as we are interested in highly reflected waves, which we
do not observe if the waves do not have time to reach the boundary.

From the spectral analysis that will be recalled in Section 3.1, we have
an explicit representation for the Green function associated to the half-wave
initial value problem with a Dirac at (a, b) as initial condition at time s:

G((x, y, t), (a, b, s)) =
X

k�1

Z

R
e±i(t�s)

p
�k(⌘)ei(y�b)⌘ek(x, ⌘)ek(a, ⌘) d⌘

where �k(⌘) = ⌘2 + ⌘4/3!k, with �!k a zero of the Airy function, and where
the ek(x, ⌘) are explicit, real-valued functions that are defined in Section 3.1.
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We now record several remarks that will be of help later and relate to various
phase space localizations.

Remark 1.10. We may perform a spectral localization at �k(⌘) ⇠ h�2,
which corresponds to inserting a smooth, compactly supported away from zero
 2(h

»
�k(⌘)); on the flow, this is nothing but  2(hDt) and this smooths out

the Green function. Then we are dealing with a semi-classical boundary value
problem with small parameter h. With the usual notation ⌧ = h

i @t, ⌘ = h
i @y,

⇠ = h
i @x, the characteristic set of our operator is given by

⌧2 = ⇠2 + (1 + x)⌘2.

The hyperbolic (resp. elliptic) subset of the cotangent bundle of the boundary
x = 0 is |⌧ | > |⌘|, (resp. |⌧ | < |⌘|), and the gliding subset is |⌧ | = |⌘|. From
⌧2 = (hDt)2 = h2�k(Dy), at the symbolic level on the micro-support of any
gallery mode associated to !k (see Section 3.1 for a definition of gallery modes)
one gets

(1.8) ⌘4/3h2/3!k = ⇠2 + x⌘2.

Remark 1.11. We may also localize with  1(hDy), with  1 2 C1
0 (]0,1[),

which correspond to a Fourier localization along the tangential (i.e., y) direc-
tion. (Notice such a truncation is easily seen to commute with the equation,
hence the flow.) Since we are not interested with waves transverse to the

boundary, we may and will assume that on the support of  1(h⌘) 2(h
»
�k(⌘))

one has k  "h�1 with ✏ small. This is compatible with (1.8) since !k ' k2/3

and k  "h�1 is equivalent to |⇠| . "2/3. This fact will later have its importance
when a  h1/2.

Remark 1.12. Irrespective of the position of a relative to h, the remaining
part of the Green function will be essentially transverse and see at most one
reflexion for t 2 [0, T0], with T0 small (depending on the above choice of ").
Hence, it can be dealt with as in [2] to get the free space decay and we will
ignore it in the upcoming analysis.

Remark 1.13. Finally, the symmetry of G (or its suitable spectral trun-
cations) with respect to x and a will be of great importance: it allows us to
restrict the computation of the L1 norm to the region 0  x  a.

Now, we consider initial data u0(x, y) =  2(h
p
�4g) 1(hDy)�x=a,y=0

where the  j are those of Remark 1.11. We will use di↵erent arguments de-
pending on the respective position of a and h.

The first case is a � h4/7: there, we follow ideas of [7] and write a
parametrix for the wave equation as a superposition of localized waves for
which we can compute the wave front set and hence the singularities that
appear at di↵erent times and locations. The construction of [7] has to be
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Figure 1.3. Propagation of the wavefront.

significantly altered to allow for the range h4/7 ⌧ a  h1/2, with a phase that
is less explicit but prevents amplifying factors at each reflexion that induced
the a > h1/2 restriction in [7].

The second case corresponds to data for which the distance a to the bound-
ary is such that 0 < a . h1/2: we write the contribution of our data that is
localized in a h1/4 cone of tangential directions as the L2(⌦) orthogonal sum
of whispering gallery modes and prove that after a time t the correspond-
ing wave remains frequency localized in the same cone of directions of size
h1/4, at least up to smooth remainders. While not quite as strong as a mi-
crolocal propagation of singularities result, this allows for the use of Sobolev
embedding theorem to recover the “dispersion” by using the size of the Fourier
support. The contribution of data corresponding to directions with angles with
the boundary greater than h1/4 may be dealt with separately, using a crude
parametrix construction, as they involve only cusp-type singularities.

Notice that there is an overlap between the two regions: in fact the
parametrix construction obviously provides better bounds in the overlap re-
gion, both in size (we gain an a1/8 factor in the worst case) and position (the
swallowtail occurs exactly once in between two consecutive reflexions). Had
we reproduced the parametrix construction from [7], we would have an epsilon
loss in the dispersion estimate because of the a ⇠ h1/2 region. We thought it
was of independent interest to quantify how “far” below h1/2 the construction
could be pushed while retaining the most interesting features of [7].

Remark 1.14. Figure 1.3 illustrates the propagation of (part of) the wave-
front set of the Dirac data; the second picture is a zoomed version of the first
one and shows in detail the formation of the swallowtail singularity for the
part of the wave front moving along directions which are initially tangent to
the boundary.

Finally, Theorem 1.3 is obtained for a � h4/7�" in Theorem 2.1 and for
a  h1/2 in Proposition 3.4. Theorem 1.4 is obtained in Section 2, as a remark
at the end of the proof of Proposition 2.15.
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Figure 1.4. The formation of a swallowtail singularity just after
the first reflection (zoomed image).

2. Parametrix for a � h4/7

This section is devoted to the construction, modulo O(h1), of the Green
function in the case a � h4/7�". The Green function is represented in Propo-
sition 2.5 as a superposition of O(a�1/2) reflected waves. We give a precise
analysis of the Lagrangian in the phase space associated to each reflected wave.
This geometric analysis allows us to track the degeneracy of the phases when
we apply phase stationary arguments. Our main dispersive estimate will be
Theorem 2.1.

Let us set ~ = h/⌘ and P = (�i~@x)2 + 1 + x � (�i~@t)2. For a � 0, we
denote by ⇤a ⇢ T ⇤R the Lagrangian

⇤a =
¶
(t0, ⌧ 0) 9✓ 2 R s.t. t0 = �2✓

p
1 + a+ ✓2, ⌧ 0 =

p
1 + a+ ✓2

©
.

The set ⇤a may be parametrized by t0. Let  a(t0) be the unique function such
that  a(0) = 0 and ⇤a = {(t0, 0

a(t
0)}. Let us set ⇢ = 1+ a and ✓ =

p
⇢z, then

(t0)2 = 4⇢2(z2 + z4), from which we get

2z2 + 1 =
»
1 + (t0)2/⇢2 =)  02

a = ⇢(1 + z2) =
⇢

2

⇣
1 +
»
1 + (t0)2/⇢2

⌘

and as  0
a = ⌧ 0 > 0,

 0
a =

p
⇢
Ä
1 + t02/(8⇢2) +O(t04)

ä
;

finally, by integration, as  a(0) = 0,

 a(t
0) =

p
⇢

Ç
t0 +

t03

24⇢2
+O(t05)

å
.

2.1. A singular integral representation for the data. We start by a suitable
decomposition of the smoothed Dirac as an inverse Fourier transform of a
superposition of Airy functions.
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Lemma 2.1. Let �1 2 C1
0 ((�✓0, ✓0)) with small ✓0. There exists a symbol

�0(t0, ~) of degree 0 with an asymptotic expansion in ~, i.e.,

8N, k, 9CN s.t. sup
t0

���@kt0
Ä
�0(t

0, ~)�
X

0jN

�0,j(t
0)~j
ä���  CN~N+1,

that is supported in a neighborhood of t0 = 0 and with the following properties.
Let

ũ0(t, x, h, ~) =
1

2⇡~

Z
e

i
~ (⇣(t�t0)+s(x+1�⇣2)+ s3

3 )e
i
~ a(t0)�0(t

0, ~)dt
0dsd⇣

(2⇡h)2
.

Then ũ0 is such that, for x > �1,

(1) The wave front set of ũ0 is included in ⌧ > 0. In fact,

WFh(ũ0) ⇢
¶
⌧ 2 [

p
1 + a, ⌧0]

©
,

where ⌧0 is related only to the size of the support of �0 in t0. Moreover,

Pũ0 = 0.
(2) The initial data ũ0(0, x, h, ~) is a smoothed out Dirac; that is,

ũ0(0, x, h, ~) =
1

(2⇡h)2

Z
e

i
~ (x�a)✓�1(✓) d✓ +OC1(h1).

Proof. Consider the time Fourier transform of ũ0,

ˆ̃u0(⌧/~, x, h, ~) =
Z

e�it⌧/~ũ0(t, x, h, ~) dt

= ~
1
3

Z
Ai
⇣
~�

2
3 (x+ 1� ⌧2)

⌘
e

i
~ ( a(t0)�⌧ t0)�0(t

0, ~) dt0

(2⇡h)2
.

Therefore, ˆ̃u0 is an average (with compact support in t0) of solutions to the
equation Å~

i
@x

ã2
f + (1 + x� ⌧2)f = 0.

From @t0( a(t0)� ⌧ t0) = 0, we get ⌧ =  0
a(t

0), and therefore there exists ✓ such
that ⌧ =

p
1 + a+ ✓2, which proves the claim on WFh(ũ0).

We proceed with the second part of the statement, regarding the initial
data,

ũ0(0, x, h, ~) =
1

(2⇡h)22⇡~

Z
e

i
~ (s(x+1�⇣2)+s3/3�t0⇣+ a(t0))�0 dt

0dsd⇣.

Let �(t0, x, s, ⇣) = s(x+ 1� ⇣2) + s3/3� t0⇣, and denote by C� the set

C� = {(t0, x, s, ⇣) s.t. @s� = @⇣� = 0}.
The equations defining C� read x + 1 + s2 = ⇣2 and 2s⇣ + t0 = 0. From the
first equation, we get ⇣ 6= 0 on C� (recall x > �1). Now,

Hesss,⇣� =

Ç
2s �2⇣
�2⇣ �2s

å
,

and det(Hesss,⇣�) 6= 0 on C�. Therefore C� is a smooth manifold.
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Denote by ⇡1 the projection from C� to T ⇤Rx; that is,

⇡1((t
0, x, s, ⇣) 2 C�) = (x, @x�) = (x, s).

and by ⇡2 the projection from C� to T ⇤Rt0 , that is

⇡2((t
0, x, s, ⇣) 2 C�) = (t0,�@t0�) = (t0, ⇣).

For ⌧ 0 6= 0, we have

⇡�1
2 (t0, ⌧ 0) = (t0, x = �1 + ⌧ 02 � t02/(4⇣2), s = �t0/2⇣, ⇣ = ⌧ 0).

Therefore C� induces a canonical transformation from T ⇤Rt0 \{⌧ 0 = 0} to T ⇤Rx

defined by

�(t0, ⌧ 0) = (x = �1 + ⌧ 02 � t02/4⌧ 02, ⇠ = �t0/2⌧ 0).

Notice that

�(⇤a) = (x = a, ⇠ = ✓) = T ⇤
x=a,

and � is a symplectic isomorphism from a neighborhood of (t0, ⌧ 0) = (0,
p
1 + a)

onto a neighborhood of (x, ⇠) = (a, 0).
The remaining part of the argument is standard: denote by G(t0, x) =

�(t0, x, sc, ⇣c) where (sc, ⇣c > 0) is the unique solution of 1 + x + s2c = ⇣2c and
t0 + 2sc⇣c = 0, then G(0, a) = 0, as sc(0, a) = 0 and ⇣c(0, a) =

p
1 + a. By

stationary phase in (s, ⇣) we get

ũ0(0, x, h, ~) =
1

(2⇡h)2

Z
e

i
~ (G(t0,x)+ a(t0))A0(t

0, x, ~)�0(t0, ~) dt0,

where A0(t0, x, ~) is an elliptic symbol of order 0. From @t0G(t0, a)+ 0
a(t

0) = 0
and G(0, a) = 0, we get G(t0, a) = � a(t0), and therefore

G(t0, x) +  a(t
0) = (x� a)Ha(t

0, x) with @t0Ha(0, a) 6= 0.

By change of variables ⇥ = Ha(t0, x) and using that for all F there exists G
such that

Z
e

i
~ (x�a)⇥F (⇥, x, ~) d⇥ =

Z
e

i
~ (x�a)⇥G(⇥, ~) d⇥+O(~1),

we obtain the desired conclusion, since by the above canonical transformation
the map �0(t0, ~) 7! G(⇥, ~) is elliptic of degree 0. ⇤

Set g0(t0, ~) = e
i
~ a(t0)�0(t0, ~). We proceed with

Lemma 2.2. Let c > 0, " > 0. Then, with ⇢ = 1 + a,

sup
⌧p

⇢�c~2/3�"

|ĝ0(⌧/~, ~)| 2 O(~1).
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Proof. Notice that ĝ0(⌧/~) behaves like an Airy function from the geom-
etry of ⇤a so the estimate on ĝ0 is really the classical estimate on Ai. We
provide a direct argument: for ⌧ <

p
⇢,

ĝ0(⌧/~, ~) =
Z

e
i
~ ( a(t)�t⌧)�0(t, ~) dt,

and we may integrate by parts using L = ( 0
a(t)� ⌧)�1 ~

i @t; recall that  
0
a(t) =p

⇢(1 + t2/8⇢2 +O(t4)). Notice that

(tL)N (�0) = ~N
NX

j=0

↵j,N (t)

( 0
a(t)� ⌧)2N�j

,

where ↵j,N (t)= tbN�2jc+�j,N (t) (by induction, as  00
a(t)=O(t) and bN�2jc+

+ 1 � bN � 2j + 1c+ as well as bbN � 2(j � 1)c+ � 1c+ � bN � 2j + 1c+). As
such, it remains to check that for t 2 [�1,+1] and ↵ 2]0, 1]

~N tbN�2jc+

(↵+ t2)2N�j
 CN,j

~N

↵3N/2
,

which is trivial if j � N/2 and follows from setting t =
p
↵s if j < N/2. ⇤

Remark 2.3. One may also prove that there exists ⌧0 > 0 (related to the
support of �0) such that

sup
⌧�⌧0

|ĝ0(⌧/~, ~)| 2 O(~1).

2.2. Digression on Airy functions. We recall a few well-known facts about
Airy functions. Let z > 0. The C1 function Ai may be defined as

Ai(�z) =
1

2⇡

Z

R
ei(s

3/3�sz) ds

and is easily seen to satisfy the Airy equation Ai00(z) � zAi(z) = 0, which we
denote by (A).

Remark 2.4. Notice that the defining integral is only an oscillatory inte-
gral; it may be seen as the inverse Fourier transform of a tempered distribution
and subsequently proved to be C1. Alternatively, one may proceed as in [6,
7.6.16]: let ⌘ > 0, ⇠ = s + i⌘, and define Ai(z) = (2⇡)�1

R
Im ⇠=⌘ e

i(⇠3/3+⇠z) d⇠,
which is absolutely convergent. One then proves the definition to be indepen-
dent of ⌘, and for ⌘ ! 0, we recover the previous definition.

Let ! be a cubic root of unity: !3 = 1. Obviously, z 7! Ai(!z) is a
solution to (A). Any two of these three solutions yield a basis of solutions
to (A), and the linear relation between them is

P
!3=1 !Ai(!z) = 0; see [6,

7.6.18]. If we set ! = e2i⇡/3, then Ai(z) = �!Ai(!z) � !̄Ai(!̄z), which we
rewrite as

Ai(�z) = e�i⇡/3Ai(e�i⇡/3z) + ei⇡/3Ai(ei⇡/3z) = A+(z) +A�(z),
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where we define A±(z) = ⌥!Ai(⌥!z). (Our definition di↵ers slightly from the
usual one which does not include the front factor ⌥!.) Notice that A�(z) =
Ā+(z̄). We also have asymptotic expansions (e.g., [14]):

A�(z) =
1

2
p
⇡z

1
4

ei⇡/4e�
2
3 iz

3
2 exp⌥(z3/2) =

1

z
1
4

ei⇡/4e�
2
3 iz

3
2 �(z),

with exp⌥(z3/2) ⇠ (1 +
P

l�1 clz
� 3l

2 ) ⇠ 2
p
⇡ �(z) as z ! +1 and the cor-

responding expansion for A+, where we define  +(z) =  ̄�(z̄). Moreover, we
have

A�(z)

A+(z)
= ie�

4
3 iz

3/2
eiB(z

3
2 ), with iB = ⌥� ⌥̄.

Notice that for u 2 R+, B(u) 2 R and B(u) ⇠P
j�1 bju

�j for u ! +1.

2.3. The parametrix construction. Let F (⇣, ~) be a function with compact

support in ⇣ 2 [1 + ch
2
3�", ⇣0]. Define

u(t, x, ~) = 1

2⇡~

Z
e

i
~ (⇣t+s(x+1�⇣2)+s3/3)F (⇣, ~) dsd⇣.

One easily checks that Pu = 0 and the trace on x = 0 is

u(t, 0, ~) = ~�
2
3

Z
e

i
~ t⇣(A+ +A�)(~�2/3(⇣2 � 1))F (⇣, ~) d⇣.

Define f by F (⇣, ~) =
R
exp(�it0⇣/~)f(t0, ~)dt0; then

u(t, 0, ~) = J+(f) + J�(f),

where J± are Fourier integral operators corresponding to canonical transfor-
mations j± on T ⇤Rt \ {⌧ � 1},

j±(t
0, ⌧ 0) =

Ä
t = t0 ⌥ 2⌧

p
⌧2 � 1, ⌧ = ⌧ 0

ä
.

We now set up some notation:

• let �0(⌘) 2 C1
0 ((1/2, 5/2)) be a cut-o↵ function such that �0 = 1 on

[1, 2];
• recall �1 2 C1

0 ((�✓0, ✓0)) with small ✓0;

• let a 2 [h
2
3�", a0], with a0 small;

• let � > 0 be such that
p
1 + a�

p
1 + a� � ca for all a 2 [0, a0];

• let �2(u) 2 C1 with �2(u) = 0 for u  �/2 and �2(u) = 1 for u � �;
• let �3(⇣) 2 C1 with �3(⇣) = 1 for 3/4  ⇣  ⇣0 and �3(⇣) = 0 for
⇣ � ⇣1 or ⇣  1/2 (with ⇣1 > ⇣0, ⇣0�1 > 0 and small and ⇣1�1 small).
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Define

vN (t, x, y, h) =
1

(2⇡h)2

Z
ei

⌘
hyuN (t, x, h/⌘)⌘�0(⌘) d⌘,

uN (t, x, ~) =(�i)N

2⇡~

Z
e

i
~ (t⇣+s(x+1�⇣2)+s3/3� 4

3N(⇣2�1)
3
2+~NB((⇣2�1)

3
2 /~))

⇥ �2((⇣
2 � 1)/a)�3(⇣)ĝ0(⇣/~, ~) dsd⇣,

v(t, x, y, h) =
X

0NC0/
p
a

vN (t, x, y, h),

and let P = @2t � (@2x + (1 + x)@2y).

Proposition 2.5. There exists C0 such that the following hold true:

(1) v is a solution to Pv = 0 for x > �1;
(2) its trace on the boundary, v(t 2 [0, 1], x = 0), is OC1(h1);
(3) at time t = 0, we have

v(0, x, y, h)� (2⇡h)�2
Z

e
i
h (⌘y+(x�a)⇠)�0(⌘)�1(⇠/⌘) d⌘d⇠ = OC1(h1).

Remark 2.6. Here and thereafter, f(z, h) 2 OC1(h1) for z 2 � if, uni-

formly in a 2 [h
2
3�", 1],

8↵, N, 9C↵,N s.t. sup
z2�

|@↵z f(z, h)|  C↵,NhN .

Proof. Obviously v is defined by a finite sum and each vN is a solution to
PvN = 0. We postpone the rest of the proof to Section 2.5. ⇤

Remark 2.7. We may also define v by a sum from �C0/
p
a to C0/

p
a

and replace t 2 [0, 1] by t 2 [�1, 1]. The equation enjoys time symmetry, and
therefore the two points of view are equivalent.

We start by studying uN ; from there, we may obtain information on vN
by integration over ⌘. This, however, is a nontrivial matter, as ~ = h/⌘ and

integration over ⌘ has an e↵ect on exp(iNB((⇣2 � 1)
3
2 /~)).

Let

�a,N,~(t, x, t
0, s, ⇣) = (t� t0)⇣ + s(x+ 1� ⇣2) + s3/3

� 4

3
N(⇣2 � 1)

3
2 + ~NB((⇣2 � 1)

3
2 /~) +  a(t

0)

so that

uN (t, x, ~) = (�i)N

2⇡~

Z
e

i
~�a,N,~�2((⇣

2 � 1)/a)�3(⇣)�0(t
0, ~) dt0dsd⇣.

Notice that

• t0 takes values in a compact set close to t0 = 0;
• ⇣ takes values in a compact set close to ⇣ = 1;
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• the s integral is oscillatory, and as the symbol is independent of s, this
yields an Airy function (something we will use only to check the trace
condition in Proposition 2.5).

Let us set

Ca,N,~ = {(t, x, t0, s, ⇣) s.t. @t0�a,N,~ = @s�a,N,~ = @⇣�a,N,~ = 0}.
We therefore get a system of three equations defining Ca,N,~,

⇣ =  0
a(t

0),

x = ⇣2 � 1� s2,

t = t0 + 2s⇣ + 4N⇣(⇣2 � 1)1/2
Å
1� 3

4
B0((⇣2 � 1)

3
2 /~)

ã
.

Notice that on the support of the symbol in the definition of uN , we have
⇣ 2 [

»
1 + a�/2, ⇣1], with ⇣1 ⇠ 1. We can thus further localize the symbol

with �4(s) 2 C1
0 , �4 = 1 for s 2 [�⇣1, ⇣1], as for |s| > |⇣|, we will have

x = ⇣2 � 1� s2 < �1 and as such the contribution of 1� �4 will be OC1(h1)
(by integration by parts in s) in the x � �1 region.

Remark 2.8. In fact, one may localize closer to s = 0: if �4(s) = 1 on

[�
»
⇣21�1,

»
⇣21�1], the same argument provides a remainder term for x��"0.

Hence, localizing s close to 0 implies ⇣1 close to 1, and therefore ✓0 smaller and
smaller, and the same for a0.

We may parametrize Ca,N,~ by (s, ✓) when they are close to the origin:

x = a+ ✓2 � s2,

t = 2
p
1 + a+ ✓2

Å
s� ✓ + 2N

p
a+ ✓2

Å
1� 3

4
B0
⇣
(a+ ✓2)

3
2 /~

⌘ãã
,

t0 = �2✓
p
1 + a+ ✓2,

s = s,

⇣ =
p
1 + a+ ✓2.

Notice that (s, ✓) ! (s, t0 = �2✓
p
1 + a+ ✓2) is a local di↵eomorphism in a

neighborhood of (0, 0), which ensures that Ca,N,~ is a smooth 2D manifold.
Let us denote by ⇤a,N,~ the image of Ca,N,~ by the map

(t, x, t0, s, ⇣) ! (x, t, ⇠ = @x�a,N,~, ⌧ = @t�a,N,~);

then ⇤a,N,~ is a Lagrangian submanifold that is parametrized by (s, ✓):

x = a+ ✓2 � s2,

t = 2
p
1 + a+ ✓2

Å
s� ✓ + 2N

p
a+ ✓2

Å
1� 3

4
B0
⇣
(a+ ✓2)

3
2 /~

⌘ãã
,

⇠ = s,

⌧ =
p
1 + a+ ✓2.
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Lemma 2.9. The Lagrangian submanifold ⇤a,N,~ is smooth, and its para-
metrization by (s, ✓) is one-to-one.

Proof. One has first to verify that at each point (s, ✓), the di↵erential of the
map (s, ✓) 7! (x, t, ⇠, ⌧) is injective. But this is obvious since (@⇠@s ,

@⇠
@✓ ) = (1, 0),

@⌧
@✓ = ✓⌧�1/2, and if ✓ = 0, then @t

@✓ (s, 0) = �2
p
1 + a. The map is clearly

one-to-one as t(s, ✓) 6= t(s,�✓) for ✓ 6= 0. ⇤

We digress for a while and explain how to add the y variable. In the
definition of vN (t, x, y, h), we have a phase function

 a,N,h(t, x, y, t
0, s, ⇣, ⌘) = ⌘y + ⌘�a,N,h/⌘(t, x, t

0, s, ⇣),

from which we get @y a,N,h = ⌘, and

@⌘ a,N,h = y +  a(t
0) + ⇣(t� t0) + s(x+ 1� ⇣2)

+ s3/3 +N(⇣2 � 1)3/2
⇣
�4/3 +B0Ä(⇣2 � 1)

3
2 ⌘/h

ä⌘
,

and the full Lagrangian ⇤a,N,h ⇢ T ⇤R3 is the set of points (x, y, t, ⇠, ⌘, ⌧) such
that there exist (s, ✓, ⌘) solution to

x =a+ ✓2 � s2,

y =�  a(�2✓(1 + a+ ✓2)
1
2 )� 2s(1 + a+ ✓2) +

2

3
s3

�N(a+ ✓2)
1
2 (3 + 2a+ 2✓2)

Å
4

3
�B0

⇣
(⇣2 � 1)

3
2 ⌘/h

⌘ã
,

t =2
p
1 + a+ ✓2(s� ✓ + 2N(a+ ✓2)

1
2

Å
1� 3

4
B0
⇣
(⇣2 � 1)

3
2 ⌘/h

⌘ã
,

⇠ =⌘s,

⌘ =⌘,

⌧ =⌘
p
1 + a+ ✓2.

Remark 2.10. Notice that for N = 0, having t = 0 in ⇤a,0,h is equivalent
to having s = ✓. This implies x = a and then y = 0 is a consequence of

(2.1)  a

⇣
�2✓(1 + a+ ✓2)

1
2

⌘
= �2✓(1 + a+ ✓2) +

2

3
✓3.

Observe that (2.1) holds true since  0
a(t

0) = (1+a+✓2)
1
2 for t0 = �2✓(1+a+✓2)

1
2

and  a(0) = 0. Therefore we can explicitly compute  a(t0), as ✓ = �t0(1+ a+

((1 + a)2 + t02)
1
2 )�

1
2 /
p
2.

2.4. A suitable change of coordinates. We now perform a rescaling of our
coordinates that provides some useful reductions.

Set

t =
p
aT, x = aX, y = �t

p
1 + a+ a

3
2Y,
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and define �N (T,X, Y, h), wN (T,X, ~) as

vN (t, x, y, h) = �N
Ä
t/
p
a, x/a, y + ta�3/2

p
1 + a, h

ä
,

uN (t, x, ~) = a�
1
2 e

i
~ t

p
1+awN

Ä
t/
p
a, x/a, ~

ä
.

We define

 ̃a(T
0) = a�

3
2

Ä
 a

Äp
aT 0ä�

p
a
p
1 + aT 0ä .

Notice that  ̃a is C1 in (T 0, a), with support in
p
a|T 0| . 1 and

(2.2)  ̃a(T
0) =

T 03

24⇢
3
2

Ä
1 +O(aT 02)

ä
(recall ⇢ = 1 + a).

Set

⇣2 � 1 = az, s =
p
a�, t0 =

p
aT 0

and

(2.3) ⇣ �p
⇢ = a�a(z) = a

z � 1p
1 + a+

p
1 + az

so that

(t� t0)⇣ +  a(t
0) = t

p
⇢+ a

3
2 ((T � T 0)�a(z) +  ̃a(T

0)).

Therefore

�a,N,~ = t
p
⇢+ a

3
2'a,N,�,

with

'a,N,�(T,X, T 0,�, z) = �a(z)(T � T 0) +  ̃a(T
0) + �(X � z) + �3/3(2.4)

+N
Å
�4

3
z

3
2 +

1

�
B
Ä
�z

3
2

äã
,

where � = a
3
2 /~ will be our large parameter. One may remark that 'a,N,� is

C1 in a, and

'0,N,� =
z � 1

2
(T � T 0) +

T 03

24
+ �(X � z) +

1

3
�3 +N

Å
�4

3
z

3
2 +

1

�
B
Ä
�z

3
2

äã
,

and we have z � �/2 > 0 on the support of the symbols in our integrals.
We have now

�N (T,X, Y, h) =

p
a

(2⇡h)2

Z
ei

a3/2
h ⌘Y wN (T,X, ~)⌘�0(⌘)d⌘

and

wN (T,X, ~)

=
(�i)N�

2⇡

Z
ei�'a,N,��2(z)

�3(
p
1 + az)

2
p
1 + az

�4(
p
a�)�0(

p
aT 0, ~) dT 0d�dz,
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where we used dt0dsd⇣ = a2

2
p
1+az

dT 0d�dz and a2/(2⇡~) =
p
a�/(2⇡). Finally,

we set ✓ =
p
aµ and �̃ = �/⌘ = a

3
2 /h. By our change of variables, the

di↵erential operator P becomes

P = a�2Qa with Qa = �@2X � (X � 1)@2Y + 2
p
1 + a@T@Y + a@2T ,

and

Qa(e
i�Y f(T,X)) = ei�Y �2Qaf

with

Qa =
Å
1

i�
@X

ã2
+ (X � 1)� 2

p
⇢
1

i�
@T � a

Å
1

i�
@T

ã2
.

Our initial data at T = 0 is now
p
a

(2⇡h)2

Z
ei

a3/2

h (⌘Y+(X�1)⌅)�0(⌘)�1(
p
a⌅/⌘) d⌘d⌅,

and it is concentrated at Y = 0, X = 1. The new operator Qa has symbol

�(Qa) = ⌅
2 +X � 1� 2

p
⇢⌧ � a⌧2,

and the positive root in ⌧ of �(Qa) at X = 1 is

⌧ =
⌅2

p
⇢+

p
⇢+ a⌅2

.

Notice that, as ⌧ is preserved by the flow, the bouncing angles at X = 0 are
such that ⌅2

bounce = 1 + 2
p
⇢⌧ + a⌧2 = 1 + ⌅2

0 � 1; we are now facing only
transverse reflexions, however we aim at studying the flow for very large times.

Remark 2.11. Assuming the worst terms are |⇠| . p
a, this translates

into |⌅| . 1, which implies ⌧ bounded, and for small a, Qa degenerates to a
Schrödinger operator.

From @T 0 =
p
a@t0 , @s =

p
a@� and @z =

a
2 (1 + az)�

1
2@⇣ , we have

@T 0'a,N,� =  ̃0
a(T

0) +
1� z

p
⇢+

p
1 + az

,

@�'a,N,� = X � z + �2,

@z'a,N,� =
1

2
p
1 + az

Å
T � T 0 � 2�

p
1 + az

�4N
p
z
p
1 + az

Å
1� 3

4
B0Ä�z 3

2

äãã
.

The Lagrangian of  ̃a is parametrized by

T 0 = �2µ
»
1 + a+ aµ2,  ̃0

a(T
0) =

µ2

p
⇢+

p
1 + a+ aµ2

.
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As 1 + az = ⇣2, and ⇣ = (1 + a+ ✓2)1/2 on Ca,N,~, we have

1 + µ2 = z on Ca,N,~.

In our new set of coordinates, the projection of ⇤a,N,h onto R3 is, with z =
1 + µ2,

X = 1 + µ2 � �2,(2.5)

Y = 2µ2(µ� �)H1(a, µ) +
2

3
(�3 � µ3) + 4N

Å
1� 3

4
B0Ä�z 3

2

äã
H2(a, µ),

T = 2
»
⇢+ aµ2

Å
� � µ+ 2N

»
1 + µ2

Å
1� 3

4
B0Ä�z 3

2

äãã
,

where H1 and H2 are defined as

H1(a, µ) =

p
⇢+ aµ2

p
⇢+

p
⇢+ aµ2

,(2.6)

H2(a, µ) =
»
1 + µ2

2
3 + 5a

9 + µ2(�1
3 + a

9 )�
4
9aµ

4

p
⇢
p
⇢+ aµ2 + 1 + 2

3a(1 + µ2)
.

Remark 2.12. Notice that the parameters are µ,� and ⌘ through the �
factor in the X,Y, T parametrization of ⇤a,N,h.

2.5. Proof of Proposition 2.5. We already dealt with the first item. We
now address the remaining two, which deal respectively with the boundary
condition and the initial data.

2.5.1. Proof of (2) in Proposition 2.5: the boundary condition. Set

FN (⇣, ~) = (�i)Ne
i
~ (�

4
3N(⇣2�1)

3
2+~NB((⇣2�1)

3
2 /~))�2

Ç
⇣2 � 1

a

å
�3(⇣)ĝ0(⇣/~, ~),

and recall

v|x=0 = (2⇡h)�2
Z

ei⌘y/h⌘�0(⌘)~�2/3eit⇣/~

⇥
X

0NC0/
p
a

(A+ +A�)(~�2/3(⇣2 � 1))FN d⇣d⌘;

recall as well that we constructed FN so that

FN = (�1)N
Ç
A�
A+

åN

F0,

which allows us to cancel all middle terms in the sum to get

v|x=0 = (2⇡h)�2
Z

ei⌘y/h⌘�0(⌘)~�2/3eit⇣/~(A+(· · · )F0 +A�(· · · )FNmax) d⇣d⌘.
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Let us define

I0(t, ~) =
Z

ei(t�t0) ⇣~A+(~�2/3(⇣2 � 1))e
i
~ a(t0)�2�3�0 dt

0d⇣

INmax(t, ~) =
Z

ei(t�t0) ⇣~A�(~�2/3(⇣2 � 1))e
i
~ (�

4
3N(⇣2�1)

3
2+~NB((⇣2�1)

3
2 /~))

e
i
~ a(t0)�2�3�0 dt

0d⇣ .

Hence, it is enough to prove that

• I0 2 OC1(h1) for t � 0, uniformly in a;
• INmax 2 OC1(h1) for t  1, uniformly in a,Nmax.

Start with I0. Using our change of scales, I0(t, ~) = J0(a
� 1

2 t,�) and

J0 = ~
1
6a

3
2a�

1
4

Z
ei�(�a(z)(T�T 0)+ ̃a(T 0)+ 2

3 z
3/2)�2(z)�3(

p
1 + az)

m0(�z3/2)

z1/4
�0(

p
aT 0, ~) dT 0dz

2
p
1 + az

,

where m0 is a symbol of order 0. As we have @t = a�1/2@T , � = a
3
2 /~ � ⌘h�

3
2 ",

and a � h
2
3�", we are left to prove the following:

J0(T,�) 2 OC1(��1) for T � 0, uniformly in a.

We already computed the derivatives of the phase of J0. Recall that T 0 and µ
are related by T 0 = �2µ

p
1 + a+ aµ2 and aµ2 is bounded:

@T 0(phase of J0) =
µ2 + 1� zp

1 + az +
p
1 + a+ aµ2

,

@z(phase of J0) =
T � T 0 + 2

p
z
p
1 + az

2
p
1 + az

,

where for the first derivative one uses @T 0 =
p
a@t0 and the identity

�a(z)(T�T 0)+ ̃a(T
0)+

2

3
z

3
2 =a�

3
2

Å
(t� t0)⇣+

2

3
(⇣2 � 1)

3
2 +  a(t

0)� t
p
1 + a

ã
.

The first derivative vanishes if z = 1 + µ2, and the second one vanishes if

T = �2
»
1 + a+ aµ2

⇣
µ+
»
1 + µ2

⌘
< 0.

As such, the phase has no critical points for T � 0. One has to be careful as
the domain of integration of the (T 0, z) variables is very large with small a, as
it is like (�c/

p
a, c/

p
a)⇥ (1/2, ⇠1/a).

We turn to the details. For z  z0, z is bounded. For large |T 0|, we get
|@T 0(phase)| ⇡ µ2 ⇡ T 02; therefore by integration by parts in T 0 we get decay.
If |T 0| is bounded, there is no critical points in (z, T 0).
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We are left with z � z0, where z0 is large. We first perform the integration
in T 0. There will be two critical points in T 0, given by µ± = ±

p
z � 1. Denote

by Ja,±(z) the critical values of the phase ��a(z)T 0 +  ̃a(T 0). We have

Ja,±(z) = (��a(z)T 0 +  ̃a(T
0))|T 0=�2(±)

p
z�1

p
1+az

and
d

dz
Ja,±(z) = ±2

p
z � 1

p
1 + az�0a(z) = ±

p
z � 1.

We are left with the z integral,
Z +1

z0
ei�(�a(z)T+ 2

3 z
3
2+Ja,±(z))ga(z,�) dz,

where ga is a symbol of order �1/4, uniformly in a: |@lz(z
1
4 ga(z,�))|  Clz�l

with Cl independent of a, z � z0, and ga is supported in [z0, c/a] with small
c. (Notice we used that the m0 and �3 terms in J0 are symbols or order 0,
uniformly in a.) We have

@z(�a(z)T +
2

3
z

3
2 + Ja,±(z)) =

p
z ±

p
z � 1 + T�0a(z),

and for the + case, we may integrate by parts in z without di�culties. For the
� case, set

J = @z

Å
�a(z)T +

2

3
z

3
2 + Ja,�(z)

ã
=

p
z �

p
z � 1 +

T

2
p
1 + az

.

For T � 0, z 2 C with |Im z|  �|Re z| and z0  Re z  c/a, we have

|J | � ReJ � Cp
z
,

with a constant C that does not depend on a or T � 0. Hence by the Cauchy

formula, |@lzJ �1|  Clz
1
2�l and J �1 is a symbol or order 1/2, uniformly in

a, T � 0. We may then conclude by integration by parts in z with the operator
g 7! ��1@z(J �1g). (If g is a symbol of order m, then @z(J �1g) is a symbol of
order m� 1

2 .)
The remaining integral INmax may be dealt with in a similar way. In fact,

the situation is easier: on ⇤a,N,~\{x = 0} we have s = ±
p
a+ ✓2, and therefore

t = 2
p
1 + a+ ✓2

Å
±
p
a+ ✓2 � ✓ + 2Nmax

p
a+ ✓2

Å
1� 3

4
B0
ãã

� 3C0.

2.5.2. Proof of (3) in Proposition 2.5: the initial data. Taking into ac-
count Lemmas 2.1 and 2.2, we are left to prove that VN (0, x, y, h) 2 OC1(h1)
uniformly in 1  N  C0/

p
a for x � 0. Recall x =

p
aX. From (2.5), we

have

T = 0 () � = µ� 2N
»
1 + µ2↵, with ↵ = 1� 3

4
B0Ä�z 3

2

ä
= 1+O

Å
1

�2z3

ã
,
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from which we get

X = 1 + µ2 � �2 = 1� 4N
»
(1 + µ2)↵(N

»
(1 + µ2)↵� µ)

and, as N � 1 and µ2(↵2 � 1) = µ2O((�z
3
2 )2) = O((z � 1)/(�2z3)) 2 O(��2),

4N
»
1 + µ2

⇣
N
»
1 + µ2↵� µ

⌘
� 2
Å
1�O

Å
1

�2

ãã
.

For � � �0, �0 large, we get, uniformly in N , X  �1/2 on the projection of
⇤a,N,h, which is what we need, wN (0, X, ~) 2 OC1(h1) for X � 0, uniformly
in N . We turn to the details. As before, we will proceed by integration by
parts. We have

wN (0, X, ~) = �

2⇡

Z
ei� g dT 0d�dz,

where g is a symbol in �, T 0, z and

 = ��a(z)T 0 +  ̃a(T
0) + �(X � z) + �3/3 +N

Ñ
�4

3
z

3
2 +

B
Ä
�z

3
2

ä

�

é
.

For z  z0, we may localize � to a compact region as @� = X�z+�2 � �2�z0,
and large |T 0| will not be a problem. Then for T 0,�, z in a compact set, we get
decay from the geometrical observation on the Lagrangian.

For z � z0, we may again eliminate T 0 and obtain two contributions,
Z

ei� ±g± d�dz,

where

 ± = ±2

3
(z � 1)

3
2 + �(X � z) +

�3

3
+N

Ñ
�4

3
z

3
2 +

B
Ä
�z

3
2

ä

�

é
.

By integration in �, the case z < X � 1 provides decay, while for z � X + 1,

we again have two contributions ±2/3(z � X)
3
2 . The associated phases in z

are

±2

3
(z � 1)

3
2 ± 2

3
(z �X)

3
2 +N

Ñ
�4

3
z

3
2 +

B
Ä
�z

3
2

ä

�

é
,

for which we readily observe that they are nonstationary: not only do deriva-
tives never vanish, but they increase in value with N . (For N = 1 and the two
plus signs, we deal with large values of z as we have done just above for the
boundary condition.)

We are left with the contributions of X � 1  z  X + 1, for which again
we may reduce to compact � as @� ± = �2 +X � z, and we conclude by the
geometric observation on the Lagrangian.
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2.6. Decay for the parametrix. This section is devoted to the proof of the
following result.

Theorem 2.1. Let ↵ < 4/7. There exists C such that for all h 2]0, h0],
all a 2 [h↵, a0], all X 2 [0, 1], all T 2]0, a�1/2] and all Y 2 R, the following
holds true:

(2.7)
����

X

0NC0/
p
a

�N (T,X, Y, h)
����  C(2⇡h)�2

 Å
h

a1/2T

ã1/2
+ a1/8h1/4

!

.

Remark 2.13. Note that, in the given range of parameters a, h, the above
theorem immediately implies our main result, Theorem 1.3, after undoing the
rescaling from Section 2.4.

We first observe that �0(T,X, Y, h) = v0(t, x, y, h), where v0 is a solution of
Pv0 = 0 in x > �1 with WFhv0 ⇢ {⌧ > 0}. By Proposition 2.5 (and its proof),
the associated data at time t = 0 is a smoothed out Dirac at x = a, y = 0.
Thus v0 satisfies the classical dispersive estimate for the wave equation in two
space dimensions, and since t = a1/2T , this implies

|�0(T,X, Y, h)|  C(2⇡h)�2
Å

h

a1/2T

ã1/2
.

Thus we may assume in the proof of (2.7) that the summation is taken over
1  N  C0a�1/2. Recall

(2.8) �N (T,X, Y, h) =

p
a

(2⇡h)2

Z
ei

a3/2

h ⌘Y wN (T,X, ~)⌘�0(⌘)d⌘,

where the wN are defined by

wN (T,X, ~) = (�i)N�

2⇡

(2.9)

⇥
Z

ei�'a,N,��2(z)
�3(

p
1 + az)

2
p
1 + az

�4(
p
a�)�0(

p
aT 0, ~) dT 0d�dz.

We split each wN in two pieces, wN = wN,1+wN,2; wN,2 is defined by introduc-
ing an extra cuto↵ �5(z) 2 C1

0 (]0, z0[) in the integral (2.9), with z0 > 1, close
to 1, and �5(z) = 1 on [�/2, (1 + z0)/2]. Then wN,1 is defined by introducing
the cuto↵ 1 � �5(z) in the integral (2.9). We denote by �N = �N,1 + �N,2

the corresponding splitting using formula (2.8). The following propositions
obviously imply Theorem 2.1.

Proposition 2.14. There exists C such that for all h 2]0, h0], all a 2
[h↵, a0], all X 2 [0, 1], all T 2]0, a�1/2] and all Y 2 R, the following holds
true:

����
X

2NC0/
p
a

�N,1(T,X, Y, h)
����  C(2⇡h)�2h1/3.
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Proposition 2.15. There exists C such that for all h 2]0, h0], all a 2
[h↵, a0], all X 2 [0, 1], all T 2]0, a�1/2] and all Y 2 R, the following holds
true:

(2.10)
����

X

2NC0/
p
a

�N,2(T,X, Y, h)
����  C(2⇡h)�2a1/8h1/4.

Proposition 2.16. There exists C such that for all h 2]0, h0], all a 2
[h↵, a0], all X 2 [0, 1], all T 2]0, a�1/2] and all Y 2R, the following holds true:

|�1(T,X, Y, h)|  C(2⇡h)�2

 Å
h

a1/2T

ã1/2
+ a1/8h1/4

!

.

The remaining part of this section is devoted to the proof of these three
propositions. We also include a separate section that contains useful geomet-
ric estimates and a section where we recall useful known estimates on phase
integrals.

Remark 2.17. The hypothesis a 2 [h↵, a0] with ↵ < 4/7 in Theorem 2.1
will be used to see that only a few �N overlap with each others. We will address
estimate (2.7) in the full range a 2 [h2/3�✏, a0] in a forthcoming paper.

2.6.1. Geometric estimates. In this section we denote by f(a, aµ2) various
analytic functions defined for a and aµ2 small, with f(a, b) 2 R for (a, b) 2 R2.
Recall that the projection of ⇤a,N,h onto R3 is given by

X = 1 + µ2 � �2,(2.11)

Y = 2µ2(µ� �)H1 +
2

3
(�3 � µ3) + 4N

Å
1� 3

4
B0
⇣
�z

3
2

⌘ã
H2,

T = 2
»
⇢+ aµ2

Å
� � µ+ 2N

»
1 + µ2

Å
1� 3

4
B0Ä�z 3

2

äãã
,

with z = 1 + µ2 and H1, H2 of the form (see (2.6))

H1 = f0(a, aµ
2), f0(0, 0) = 1/2,(2.12)

H2(1 + µ2)�1/2 = f1(a, aµ
2) + µ2f2(a, aµ

2), f1(0, 0) = 1/3, f2(0, 0) = �1/6.

Let us rewrite the system of equation (2.11) in the following form:

X = 1 + µ2 � �2,

(2.13)

Y = 2µ2(µ��)H1+
2

3
(�3�µ3)+2H2(1 + µ2)�1/2

Ç
T

2
p
⇢+ aµ2

� � + µ

å
,

and

(2.14) 2N
Å
1� 3

4
B0Ä�z 3

2

äã
= (1 + µ2)�1/2

Ç
T

2
p
⇢+ aµ2

� � + µ

å
.
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Then (2.13) and (2.14) is obviously equivalent to (2.11). For a given a and a
given point (X,Y, T ) 2 R3, (2.13) is a system of two equations for the unknown
(µ,�), and we will use the fact that (2.14) gives an equation for N . Recall that
we are looking at solutions of (2.13) in the range

a 2 [h↵, a0],↵ < 4/7, a|µ|2  ✏0, 0 < T  a�1/2, X 2 [0, 1],

with a0, ✏0 small. Let us denote R = 2(1� 3Y/T ).

Lemma 2.18. Let T � T0 > 0, X 2 [�2, 2], Y 2 R. There exists
µj(X,Y, T, a) 2 C, j = 1, 2, 3, 4 such that

{µ 2 C, a|µ|2  ✏0, 9� 2 C, (µ,�) is a solution of (2.13)} ⇢ {µ1, µ2, µ3, µ4}.

Moreover, there exists a function f⇤(a, aµ2) with f⇤(0, 0) = 1, and constants
C0, C1, C2 > 0, R0,M0 > 0 such that the following hold true:

(a) If |R| � R0, two of the µjf⇤(a, aµ2
j ) are in the complex disk D(

p
R,A), the

two others in the complex disk D(�
p
R,A) with A = C0

Ä
1/T + a(1+|R|)p

|R|

ä
.

Moreover, one has
»
|R| � 2A.

(b) If |R|  R0 and |R|T � M0, two of the µjf⇤(a, aµ2
j ) are in the complex disk

D(
p
R,A), the two others in the complex disk D(�

p
R,A) with A = C1

T
p

|R|
.

Moreover, one has
»
|R| � 2A.

(c) If |R|  R0 and |R|T  M0, one has |µj |  C2T�1/2 for all j.

Proof. We first get rid of �. The second equation in (2.13) is of the form
Y = B0 + �B1 + �3B2, thus by the first equation, we get

Y �B0 = �(B1 +B2(1 + µ2 �X)),

and then the first line of (2.13) gives an equation for µ,

(2.15) (Y �B0)
2 = (1 + µ2 �X)(B1 +B2(1 + µ2 �X))2,

where

B0 = 2µ3H1 � 2µ3/3 + 2H2(1 + µ2)�1/2

Ç
T

2
p
⇢+ aµ2

+ µ

å
,

B1 = �2µ2H1 � 2H2(1 + µ2)�1/2,

B2 = 2/3.

By (2.6) and (2.12) one gets, through explicit computation, the identity

8w, f0(0, w) + f2(0, w) = 1/3.

This implies (we use aµ2+k = (aµ2)µk) that

B0 = �µ2T/6f3 + 2/3µf4 + T/3f5,

B1 +B2(1 + µ2 �X) = �2X/3 + f6,
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with fl(0, 0) = 1 for l = 3, 4, 5 and f6(0, 0) = 0. Let D = �2X/3 + f6. We
may then rewrite (2.15) as

(2.16) P+P� = 36(1�X)
D2

T 2
,

with

P± = (f⇤µ)
2 � 2(f⇤µ)

T
(2f4 ⌥ 3D)/f⇤ �R0, R0 = R+ f7, f7(0, 0) = 0

and f⇤ =
p
f3, f⇤(0, 0) = 1.

By classical arguments on perturbations of polynomial equations, (2.16)
implies that for a and a|µ|2 small, the µ equation (2.15) admits at most fourt
complex solutions (at most since we have the constraint a|µ|2 small). Set
µ⇤ = µf⇤(a, aµ2). Then µ 7! µ⇤ is a holomorphic change of coordinates and
|@µ

⇤

@µ �1|  Cte(a0+ ✏0). With the notation g± = (2f4⌥3D)/f⇤, the two roots

µ⇤
±,✏ of P✏ satisfy the equation (recall that g✏ and R0 are functions of (a, aµ2))

(2.17) µ⇤
±,✏ = g✏/T ±

»
R0 + (g✏/T )2, ✏ = ±.

Assume first |R| � R0 with R0 large. Then by (2.17) and f7(0, 0) = 0, there
exists C0 such that
(2.18)

µ⇤
+,✏2D(

p
R,A0/2), µ⇤

�,✏2D(�
p
R,A0/2), A0=C0

Ñ
1/T +

a(1 + |R|)»
|R|

é
.

For
»
|R| � 2A0, the two disks D± = D(±

p
R,A0) do not overlap and

dist(D+, D�) �
»
|R|. Thus there exists C3 such that

|P+P�(µ)| � C3|R|A2
0 � C3C

2
0 |R|/T 2, 8µ⇤ 2 C \ (D+ [D�).

This contradicts (2.16) for |R| � R0 large enough and proves (a).
For |R|  R0, and |R|T � M0, with M0 large, (2.18) remains true. Thus

we get

µ⇤
+,✏2D(

p
R,A1/2), µ⇤

�,✏2D(�
p
R,A1/2), A1=C0

Ñ
1/T +

a(1 +R0)»
|R|

é
.

Set A2 = C
T
p

|R|
. Since |R|  R0 and T  a�1/2, for C large enough one

has A2 � 2A1. The two disks D± = D(±
p
R,A2) do not overlap, and

dist(D+, D�) �
»
|R| for M0 � 2C. Thus one has

|P+P�(µ)| � C4A
2
2|R| = C4C

2/T 2, 8µ⇤ 2 C \ (D+ [D�),

and this contradicts (2.16) for C large enough, and proves (b) for M0 large
enough. Finally, for |R|  R0, and |R|T  M0, one has clearly by (2.17) and
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T  a�1/2, |µ±,±|  C5T�1/2, and thus for c � 2C5

8µ 2 C such that |µ| � cT�1/2, |P+P�(µ)| � C6c
4/T 2,

This contradicts (2.16) for c large enough. The proof of Lemma 2.18 is com-
plete. ⇤

Let us now study the equation (2.14), which provides N . Since B0(u) 2
O(u�2), z � �/2 > 0, N  C0a�1/2, and a � h4/7, one has

|NB0(�z
3
2 )| 2 O(N��2) = O(Nh2/a3) 2 O(a�7/2h2) 2 O(1).

Let hµi = (1+ µ2)1/2. From �2 � µ2 = 1�X, we get that for X in [�2, 2], we
have |� � µ|/hµi 2 O(1). Therefore (2.14) implies

(2.19) 2N = T�a(µ) +O(1), �a(µ) =
1

2hµi
p
⇢+ aµ2

.

Let U = {µ 2 C, |µ|  0.5 or |Im(µ)|  |Re(µ)|/
p
3}. Then �a(µ) is bounded

on U and

(2.20) |�a(µ)� �a(µ
0)|  C|µ2 � µ02|

sup(h|µ|i, h|µ0|i)

Ç
a+

1

h|µ|ih|µ0|i

å
, 8µ, µ0 2 U.

Observe that for b2R, and |b|�2r, the complex disk D(b, r) is contained in U .
For a given point (X,Y, T ) 2 [�2, 2] ⇥ R ⇥ [0, C0a�1/2], let us denote by

N (X,Y, T ) the set of integers N � 1 such that (2.11) admits at least one real
solution (µ,�,�) with a|µ|2  ✏0 and � � �0. We denote by NC(X,Y, T ) the
set of complex N such that (2.11) admits at least one complex solution (µ,�)
with µ 2 U and a|µ|2  ✏0 and � � �0. Observe that N (X,Y, T ) depends on a.
For E ⇢ N, |E|, will denote the cardinal of E. Observe that (2.19) implies for
an absolute constant N0

(2.21) N (X,Y, T ) ⇢ [1, T/2 +N0].

Lemma 2.19. There exists a constant C0 such that the following hold true:

(a) For all (X,Y, T ) 2 [0, 1] ⇥ R ⇥ [0, a�1/2], one has |N (X,Y, T )|  C0, and
NC(X,Y, T ) is a subset of the union of four disks of radius C0.

(b) For all (X,Y, T ) 2 [0, 1]⇥ R⇥ [0, a�1/2], the subset of N,

N1(X,Y, T ) =
[

|Y 0�Y |+|T 0�T |1,|X0�X|1

N (X 0, Y 0, T 0),

satisfies

|N1(X,Y, T )|  C0.

Proof. We start with (a), which is a consequence of (2.19), since by Lemma
2.18, for a given (X,Y, T � T0), there are at most four possible values of µ.
(For T  T0 we use (2.21).)
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We proceed with (b). By (2.21), we may assume T � T1 with T1 large.
Recall R = 2(1 � 3Y/T ). Let (X 0, Y 0, T 0) such that |Y 0 � Y | + |T 0 � T | 
1, X 0 2 [0, 1]. Set R0 = 2(1 � 3Y 0/T 0). One has |R � R0|  C(1 + |R|)/T .
Let us first assume |R| � 2R0, with R0 as in Lemma 2.18. Since T is large,
one has |R0| � R0 and |R0| ' |R|. Let N 0 2 N(X 0, Y 0, T 0) and µ0 such that

(2.11) holds true. By Lemma 2.18(a), one may assume µ0⇤ 2 D(
p
R

0
, A0). Take

µ⇤ 2 D(
p
R,A) associated to (X,Y, T ). Since µ0 is real, one has R0 � R0, hence

R � 2R0, and therefore µ 2 U . Let N 2 NC(X,Y, T ) associated to µ. From
a1/2  1/T one gets

|µ� µ0|  C|µ⇤ � µ0⇤|  C
⇣
A+A0 +

���
p
R�

p
R

0���
⌘
 C(1 + |R|)

T
»
|R|

.

By (2.19) and (2.20), this implies since a|R| ' a|µ02|  ✏0,

(2.22) 2|N �N 0|  |T 0 � T |�a(µ
0) + T |�a(µ

0)� �a(µ)|+O(1)

 C(a+ 1/|R|)(1 + |R|)»
|R|

+O(1) 2 O(1).

Let us now assume |R|  2R0 and T |R| � M0 + 8. From |RT � R0T 0| =
|2(T � T 0) � 6(Y � Y 0)|  8, we get |R0|T 0 � M0. We may thus apply
Lemma 2.18(b). Let N 0 2 N(X 0, Y 0, T 0) and µ0 2 R such that (2.11) holds
true. Since µ0 is real, one has R0 > 0, thus R0T 0 > M0, and this implies R > 0
(take M0 large). Moreover one has |R � R0|  C(1 + |R|)/T , |R0|  3R0, and

also |R0| ' |R|. By the same argument as above, we now get |µ�µ0|  C(1+R0)

T
p
R

,

and since |µ| + |µ0|  C
»
|R|, one gets |µ2 � µ02|  C(1 + R0)/T . Thus by

(2.19) and (2.20),

(2.23) 2|N �N 0|  CT (a+O(1))(1 +R0)/T 2 O(1).

Finally, for |R|  2R0 and T |R|  M0 + 8, one has T 0|R0|  M0 + 16. Thus
by part (c) of Lemma 2.18, one has |µ0

j |  CT 1/2, |µj |  CT�1/2, and thus

in that case we get |µ2 � µ02|  C/T ; thus (2.23) holds also true in that case.
Since N 2 NC(X,Y, T ), (2.22), (2.23), and part (a) of our lemma imply (b).
The proof of our lemma is complete. ⇤

2.6.2. Phase integrals. We first recall the following lemma, for which we
refer to [19].

Lemma 2.20. Let K ⇢ R be a compact set, and let a(⇠,�) be a classical
symbol of degree 0 in � � 1 with a(⇠,�) = 0 for ⇠ /2 K . Let k � 2, c0 > 0 and
�(⇠) a phase function such that

X

2jk

|�(j)(⇠)| � c0, 8⇠ 2 K.
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Then, there exists C such that
����
Z

ei��(⇠)a(⇠,�)
����  C��1/k, 8� � 1.

Moreover, the constant C depends only on c0 and on an upper bound of a finite
number of derivatives of �(2), a in a neighborhood of K .

The next lemma will be of importance to us. As such, we have included
its proof for the sake of the reader while not claiming any novelty.

Let H(⇠) be a smooth function defined in a neighborhood of (0, 0) in R2

such that H(0) = 0 and rH(0) = 0. We assume that the Hessian H 00 satisfies
rank(H 00(0)) = 1 and r det(H 00)(0) 6= 0. Then the equation det(H 00)(⇠) = 0
defines a smooth curve C near 0 2 R2 with 0 2 C. Let s ! ⇠(s) be a smooth
parametrization of C, with ⇠(0) = 0, and define the curve X(s) in R2 by

X(s) = H 0(⇠(s)).

Lemma 2.21. Let K = {⇠ 2 R2, |⇠|  r}, and let a(⇠,�) be a classical
symbol of degree 0 in � � 1 with a(⇠,�) = 0 for ⇠ /2 K . For x 2 R2 close to 0,
set

I(x,�) =
Z

ei�(x.⇠�H(⇠))a(⇠,�)d⇠.

Then for r > 0 small enough, the following hold true:

(a) If X 0(0) 6= 0, there exists C such that for all x close to 0,

|I(x,�)|  C��5/6.

(b) If X 0(0) = 0 and X 00(0) 6= 0, there exists C such that for all x close to 0,

|I(x,�)|  C��3/4.

Moreover, if a is elliptic at ⇠ = 0, there exists C 0 such that

|I(0,�)| � C 0��3/4.

Proof. By a linear change of coordinates in ⇠, we may assume H(⇠) =
⇠21/2 + O(⇠3). Set �(x, ⇠) = x.⇠ � H(⇠). Then �0

⇠1
(x, ⇠) = x1 � H 0

⇠1
(⇠).

Therefore, there exists a unique nondegenerate critical point ⇠c1(x1, ⇠2) in the
variable ⇠1, and the critical value  (x, ⇠2) satisfies

G(x, ⇠2) =  
0
⇠2(x, ⇠2) = x2 �H 0

⇠2(⇠
c
1(x1, ⇠2), ⇠2).

By stationary phase in ⇠1, one has

I(x,�) = ��1/2
Z

ei� (x,⇠2)b(x, ⇠2,�)d⇠2.

By Lemma 2.20, it remains to prove

(a0) If X 0(0) 6= 0, there exists c0 > 0 such that for all (x, ⇠2) close to (0, 0),
|@2⇠2G| � c0.
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(b0) If X 0(0) = 0 and X 00(0) 6= 0, there exists c0 > 0 such that for all (x, ⇠2)
close to (0, 0), |@3⇠2G| � c0, and in the case a elliptic the lower bound at
x = 0.

Let us prove (a0). Since G(x, ⇠2) is smooth and r small, it is su�cient to
prove @2⇠2G(0, 0) 6= 0. The Taylor expansion of H at order 3 reads as follows:

H(⇠) = ⇠21/2 + a⇠31 + b⇠21⇠2 + c⇠1⇠
2
2 + d⇠32 +O(⇠4).

Thus one has ⇠c1(0, ⇠2) = �c⇠22 + O(⇠32) and we get �G(0, ⇠2) = 3d⇠22 + O(⇠32).
Thus @2⇠2G(0, 0) 6= 0 is equivalent to d 6= 0.

On the other hand, one has detH 00(⇠) = 2c⇠1 + 6d⇠2 + O(⇠2), and since
by hypothesis r det(H 00)(0) 6= 0, one has (c, d) 6= (0, 0). Moreover, one has

X(s) = H 0(⇠(s)) =
Ä
⇠1(s) +O(s2), O(s2)

ä

and therefore X 0(0) 6= 0 is equivalent to ⇠01(0) 6= 0. This in turn is equivalent
to the fact that ⇠1 is a parameter on C, which is equivalent to d 6= 0.

Let us now prove (b0). Since X 0(0) = 0, we get d = 0 and therefore c 6= 0.
Now, ⇠2 is a parameter on C, and we have ⇠1 2 O(⇠22) on C. We will use a
Taylor expansion of H at order 4, but since ⇠c1(0, ⇠2) is quadratic in ⇠2 and
⇠1(s) quadratic in s, we will just need the ⇠42 term; i.e.,

H(⇠) = ⇠21/2 + a⇠31 + b⇠21⇠2 + c⇠1⇠
2
2 + e⇠42 + · · ·+O(⇠5).

Then we get detH 00(⇠) = 2c⇠1 + 4(3e � c2)⇠22 + O(⇠3). Therefore ⇠1 =
2(c � 3e/c)⇠22 + O(⇠32) is an equation for C, and we get that X 00(0) 6= 0 is
equivalent to X 00

1 (0) 6= 0. This in turn is is equivalent to c2 6= 2e. On the other
hand, we easily get �G(0, ⇠2) = (4e � 2c2)⇠32 + O(⇠42). Finally, for ↵ 6= 0 and
b(⇠2,�) a symbol of degree 0 elliptic at ⇠2 = 0, and supported in |⇠2|  r with
r small enough, one clearly has

����
Z

ei�(↵⇠
4
2+O(⇠52))b(⇠2,�)d⇠2

���� � C 0��1/4,

which completes the proof. ⇤

2.6.3. Proof of Proposition 2.14. Recall

(2.24) wN,1(T,X, ~) = (�i)N�

2⇡

Z
ei�'a,N,��2(z)

�3(
p
1 + az)

2
p
1 + az

�4(
p
a�)

�0(
p
aT 0, ~)(1� �5)(z) dT

0d�dz,

where the phase 'a,N,� is defined by (see (2.4))

'a,N,�(T,X, T 0,�, z) = �a(z)(T � T 0) +  ̃a(T
0) + �(X � z) + �3/3

+N
Å
�4

3
z

3
2 +

1

�
B
⇣
�z

3
2

⌘ã
.
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For ✏j = ±, define

�N,✏1,✏2(T,X, z; a,�) = �a(z)T +
2

3
✏1(z � 1)3/2 +

2

3
✏2(z �X)3/2

�N
Å
4

3
z

3
2 � 1

�
B
⇣
�z

3
2

⌘ã
.

Lemma 2.22. The following identity holds true:

(2.25) wN,1(T,X, ~) =
X

✏1,✏2

Z
ei��N,✏1,✏2⇥✏1,✏2(z; a,�)dz +RN,a(T,X, ~),

where ⇥✏j (z; a,�) are smooth functions of z with support in

[(1 + z0)/2, (⇣
2
1 � 1)/a].

(Remark that ⇣1 > 1 is an upper bound for the support of �3.) Moreover,

|zl@lz⇥✏j |  Clz
�1/2 with Cl independent of a,�.

The remainder RN,a(T,X, ~) is OC1(~1) for X 2 [0, 1], T 2 [0, a�1/2], uni-
formly in a,N .

Proof. The proof is a simple application of stationary phase in (T 0,�) in
the integral (2.24). Recall z � (1+z0)/2 > 1 � X on the support of (1��5)(z)
and z  (⇣21 � 1)/a on the support of �3(

p
1 + az). The � integral is equal to

J1 =
Z

ei�(�
3/3��(z�X))�4(

p
a�)d�

= (z �X)1/2
Z

ei�(z�X)3/2(s3/3�s)�4(
p
a(z �X)1/2s)ds.

One has
p
a(z � X)1/2 

»
⇣21 � 1. Thus, by stationary phase near the two

critical points s = ±1 and integration by part in s elsewhere, we get

J1 = ��1/2(z �X)�1/4(e2/3i�(z�X)3/2b+(2.26)

+ e�2/3i�(z�X)3/2b�) +O(��1(z �X)�1),

where b±(
p
a(z � X)1/2,�(z � X)3/2) are symbols of degree 0 in the (large)

parameter �(z �X)3/2. Next, the T 0 integral is equal to

J2 =
Z

ei�(��a(z)T
0+ ̃a(T 0))�0(

p
aT 0, ~)dT 0.

Recall that

T 0 = �2µ
»
1 + a+ aµ2, @T 0(��a(z)T 0 +  ̃a(T

0)) =
µ2 + 1� zp

1 + az +
p
1 + a+ aµ2

.

Thus we get two distinct critical points T 0
± = ⌥2

p
z � 1

p
1 + az. The associ-

ated critical values are ��a(z)T 0
± +  ̃a(T 0

±) = ±2/3(z � 1)3/2. As before for
the � integral, we perform the change of variable T 0 = s

p
z � 1 in order to

have the two critical points s± = ⌥
p
1 + az uniformly at finite distance in z.
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One has
p
a(z � 1)1/2 

»
⇣21 � 1, and using (2.2) and (2.3) we get, again by

stationary phase near the two critical points s± and integration by part in s
elsewhere,
(2.27)

J2=�
�1/2(z� 1)�1/4(e2/3i�(z�1)3/2c+ + e�2/3i�(z�1)3/2c�)+O(��1(z� 1)�1),

where c±(
p
a(z � 1)1/2,�(z � 1)3/2) are symbols of degree 0 in the large pa-

rameter �(z � 1)3/2. By (2.26) and (2.27), one gets that formula (2.25) holds
true with symbols

(2.28) ⇥✏1,✏2(z; a,�) =
(�i)N�2(z)(1� �5)(z)�3(

p
1 + az)c✏1b✏2

4⇡
p
1 + az(z � 1)1/4(z �X)1/4

,

which completes the proof of Lemma 2.22. ⇤
Let

�N,1,✏1,✏2(T,X, Y, h) =

p
a

(2⇡h)2

Z
ei

a3/2

h ⌘Y wN,1,✏1,✏2(T,X, ~)⌘�0(⌘)d⌘,

wN,1,✏1,✏2(T,X, ~) =
Z

ei��N,✏1,✏2⇥✏1,✏2(z; a,�)dz.

In order to prove Proposition 2.14, we are reduced to proving the following
inequality:

(2.29)

�����
X

2NC0/
p
a

�N,1,✏1,✏2(T,X, Y, h)

�����  C(2⇡h)�2h1/3,

with a constant C independent of h 2]0, h0], a 2 [h↵, a0], X 2 [0, 1], T 2
[0, a�1/2].

For convenience, we take Z = z3/2 as a new variable of integration so that

(2.30) wN,1,✏1,✏2(T,X, ~) =
Z

ei��N,✏1,✏2 ⇥̃✏1,✏2(Z; a,�)dZ;

⇥̃✏1,✏2(Z; a,�) are now smooth functions of Z with support in

[((1 + z0)/2)
3/2, ((⇣21 � 1)/a)3/2].

Since dz = 2Z�1/3dZ/3, we get |Z l@lZ⇥̃|  ClZ�2/3 with Cl independent of
a,�. One has

(2.31)

@Z�N,✏1,✏2 =
2

3

Å
Ha,✏1,✏2(T,X;Z)� 2N

Å
1� 3

4
B0(�Z)

ãã
,

Ha,✏1,✏2 = Z�1/3
Å
T

2

⇣
1+aZ2/3

⌘�1/2
+✏1

⇣
Z2/3 � 1

⌘1/2
+✏2

⇣
Z2/3�X

⌘1/2ã
,

@ZHa,✏1,✏2 =
1

3
Z�4/3

Ç
�T

2

⇣
1 + aZ2/3

⌘�3/2⇣
1 + 2aZ2/3

⌘

+ ✏1
⇣
Z2/3 � 1

⌘�1/2
+ ✏2X

⇣
Z2/3 �X

⌘�1/2
å
.
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We will first prove that (2.29) holds true in the case (✏1, ✏2) = (+,+). From
(2.31), we get that the equation @ZHa,+,+(Z) = 0 admits a unique solution
Zq = Z+

q (T,X, a) > 1 such that

lim
T!1

Z+
q (T,X, a) =1 uniformly in X, a,(2.32)

0 >
9

2
Z5/3
q @2ZHa,+,+(Zq) =� aT

2

⇣
1 + aZ2/3

q

⌘�5/2
Å
1

2
� aZ2/3

q

ã

� 1

2

⇣
Z2/3
q � 1

⌘�3/2
� 1

2
X
⇣
Z2/3
q �X

⌘�3/2
.

Therefore, the function Ha,+,+(Z) is strictly increasing on [1, Zq[, and strictly
decreasing on ]Zq,1[. Observe that

(2.33) Ha,+,+(1) =
T

2
(1 + a)�1/2 + (1�X)1/2, lim

Z!1
Ha,+,+(Z) = 2.

For all k, one has

sup
Z�1

|@kZ(NB0(�Z)|  CkN�
�2Z�(k+2)  C 0

k~2a�7/2  C 00
kh

⌫ ,(2.34)

⌫ = 2� 7↵/2 > 0.

Let T0 � 1. We first prove that (2.29) holds true for T 2 [0, T0]. Since
Ha,+,+(Z)  C(1+T ), for N � N(T0) = C(1+T0), one gets |@Z�N,+,+(Z)| �
c0N with c0 > 0, and |@kZ@Z�N,+,+(Z)|  ckNZ�k for k � 1. Therefore, by
integration by parts in Z in (2.30) with the operator

L(⇥) = ��1@Z((@Z�N,+,+)
�1⇥),

one gets an extra factor (�NZ)�1 at each iteration. Thus, we get wN,1,+,+ 2
O(N�1��1), and this implies

sup
TT0,X2[0,1],Y 2R

���
X

N(T0)NC0/
p
a

�N,1,✏1,✏2(T,X, Y, h)
��� 2 O(h1).

Next, for T 2 [0, T0] and 2  N  N(T0), one may estimate the sum in
(2.29) by the sup of each term. But in that case, we know by (2.31), (2.32),
and (2.34) that there exists at most a critical point of order 2 near Z = Zq for
�N,+,+, and

|@Z�N,+,+|+ |@2Z�N,+,+|+ |@3Z�N,+,+| � c > 0.

Moreover, by the second item of (2.33), and N � 2, one has a positive lower
bound for |@Z�N,+,+(Z)| for large values of Z; thus, large values of Z yield
O(��1) contributions to wN,1,+,+, and eventually the worst contribution to
wN,1,+,+ will be the critical point of order 2 near Z = Zq. This provides

|wN,1,+,+(T,X, ~)|  C��1/3 with C independent of T 2 [0, T0], X 2 [0, 1].
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Since a1/2��1/3 = ~1/3 = (h/⌘)1/3, we get

sup
TT0,X2[0,1],Y 2R

���
X

2NN(T0)

�N,1,✏1,✏2(T,X, Y, h)
���  C(T0)(2⇡h)

�2h1/3.

Next we prove that that (2.29) holds true for T 2 [T0, a�1/2]. As before,
we may assume N  C1T , with C1 large, the contribution of the sum C1T 
N  C0/

p
a being negligible. Recall that we have Z � Z0 = ((1+z0)/2)3/2 > 1

on the support of ⇥̃+,+ in formula (2.30). By the first item of (2.32), one may
choose T0 large enough so that Z+

q (T,X, a)  (1 + Z0)/2 < Z0 for all T � T0.
By the last item of (2.31), increasing T0 if necessary, and using (2.34), we may
assume with a constant c > 0 that

|@2Z�N,+,+(Z)| � cTZ�4/3, 8Z � Z0, 8T � T0, 8N  C0a
�1/2.

Therefore, on the support of ⇥̃+,+, the phase �N,+,+ admits at most one
critical point Zc = Zc(T,X,N,�, a) and this critical point is nondegenerate.

Since N � 2, from the first two items of (2.31) we get Z1/3
c  T , and this

implies Z1/3
c ' T/N . If T/N is bounded, Zc is bounded. Since @Z�  �c < 0

for large Z, by stationary phase we get

|wN,1,+,+(T,X, ~)|  C��1/2T�1/2 with C independent ofN.

If T/N is large, then we perform the change of variable Z = s(T/N)3 in (2.30);
the unique critical point sc remains in a fixed compact interval of ]0,1[, one
has @s�  �c(T/N)3 < 0 for s large, and also

@ks ⇥̃+,+(s(T/N)3, a,�)  Ck(N/T )2s�2/3�k.

Thus, by stationary phase,

(2.35) 8T 2 [T0, a
�1/2], sup

2NC1T
sup

X2[0,1]
|wN,1,+,+(T,X, ~)|  C��1/2T�1/2.

By Lemma 2.19, we know that for any given M = (X,Y, T ), there are at most
C0 values of N such that the projection of ⇤a,N,h intersects the ball of radius
1 centered at M ; therefore, we will prove that the previous arguments imply

(2.36) sup
T2[T0,a�1/2],X2[0,1],Y 2R

�����
X

2NC0/
p
a

�N,1,+,+(T,X, Y, h)

�����

 C(T0)(2⇡h)
�2(a�1/4h1/2),

and since a�1/4h1/2  h1/3, we will get that (2.29) holds true. Let us now
explain more precisely how one can estimate the sum in (2.36) by the supremum
over N .
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Let GN (T,X,�, a) = �N,+,+(T,X,Zc(T,X,N,�, a); a,�). The stationary
phase at the critical point Zc = Zc(T,X,N,�, a) in (2.30) gives

wN,1,+,+(T,X, ~) = ��1/2T�1/2ei�GN (T,X,�,a) N (T,X; a,�).

By (2.26), (2.27), (2.28), we know that the  N (T,X; a,�) are symbols of degree
0 in �, and @k� N  Ck��k with Ck independent of 2  N  C1T . With
�̃ = a3/2/h = �/⌘, this gives

(2.37) �N,1,+,+(T,X, Y, h) =
T�1/2h1/2a�1/4

(2⇡h)2

⇥
Z

ei�̃ ⌘(Y+GN (T,X,�̃⌘,a)) N (T,X; a, �̃⌘)⌘1/2�0(⌘)d⌘.

This is an integral with large parameter �̃ and phase

LN (T,X, Y, ⌘, �̃) = ⌘(Y +GN (T,X, �̃⌘)).

By construction, the equation

@⌘LN = Y +GN (T,X,�, a) + �@�GN (T,X,�, a) = 0

implies that (X,Y, T ) belongs to the projection of ⇤a,N,h on R3. Let T 2
[T0, a�1/2], X 2 [0, 1] and Y 2 R be given. For N /2 N1(X,Y, T ), one therefore
has @⌘LN (T 0, X 0, Y 0, ⌘, �̃) 6= 0 for all � and allX 0 2 [0, 1], |Y 0�Y |+|T 0�T |  1.
This implies, since @⌘LN is linear in Y , |@⌘LN (T,X, Y, ⌘, �̃)| � 1. Moreover,
one has, with Ck independent of N,T,X, ⌘,�, a,

(2.38) |@k⌘ (@⌘LN )|  Ck.

To prove (2.38), we just use that @�Zc satisfies

@�Zc@
2
Z�N,+,+(Zc) = �@�@Z�N,+,+(Zc) = NZcB

00(�Zc).

Thus from (2.31) and (2.34), for all k � 1 we get (⌘@⌘)kZc = (�@�)kZc 2 O(h⌫).
Then (2.38) follows from

�@�GN (T,X,�) = �(@��N,+,+)(T,X,Zc; a,�) =
N

�
(�B(�Zc) + �ZcB

0(�Zc)).

Therefore, by integration by parts in ⌘ in (2.37), we get

(2.39) sup
T2[T0,a�1/2],X2[0,1],Y 2R

���
X

N /2N1(X,Y,T )

�N,1,+,+(T,X, Y, h)
��� 2 O(h1).

Finally, by Lemma 2.19, one has |N1(X,Y, T )|  C0, and therefore, we get
from (2.39) and (2.35) that (2.36) holds true.

Next, we show that (2.29) holds true for (✏1, ✏2) = (�,+). In that
case, from the last item of (2.31) and X 2 [0, 1], one gets @ZHa,�,+ < 0 for
T > 0. Therefore the functionHa,�,+(Z) decreases on [1,1[, fromHa,�,+(1) =
T (1+a)�1/2

2 +(1�X)1/2 to Ha,�,+(1) = 0. The equation @Z�N,�,+ = 0 admits
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a unique solution Zc, and this critical point is nondegenerate. We can thus
argue as we have done before for the (+,+) case.

Finally, one sees that the case (✏1, ✏2) = (+,�) is similar to the (+,+)
case, and the case (✏1, ✏2) = (�,�) is similar to the (�,+) case. We leave the
details to the reader.

The proof of Proposition 2.14 is complete.

2.6.4. Proof of Proposition 2.15. Recall that

wN,2(T,X, ~) = (�i)N�

2⇡

Z
ei�'a,N,��2(z)

�3((1 + az)
1
2 )

2(1 + az)
1
2

(2.40)

⇥ �4(a
1
2�)�0(a

1
2T 0, ~)�5(z) dT

0d�dz

as well as @T 0'a,N,� = µ2+1�zp
1+az+

p
1+a+aµ2

and @�'a,N,� = X � z + �2.

Let K = {T 0 = 0,� 2 [�1, 1], z = 1}. Let ! be a small neighborhood of K
and �6(T 0,�, z) 2 C1

0 (!) equal to 1 near K. Since for z in the support of the
integral (2.40) one has z 2 [�/2, z0] with z0 > 1 close to 1, decreasing z0 > 1
if necessary, by integration by parts in T 0,� we get

(2.41)

wN,2(T,X, ~) = (�i)N�

2⇡

Z
ei�'a,N,��(T 0,�, z; a, ~) dT 0d�dz +O(��1),

�(T 0,�, z; a, ~) = �2(z)
�3(

p
1 + az)

2
p
1 + az

�4(
p
a�)�0(

p
aT 0, ~)�5(z)�6(T

0,�, z),

with O(��1) uniform in T,X,N, a. Moreover, �(T 0,�, z; a, ~) is a classical
symbol of degree 0 in ~, with support (T 0,�, z) 2 !, and a is just a harmless
parameter in �.

We first perform the integration with respect to z in (2.41). Recall

'a,N,�(T,X, T 0,�, z) =�a(z)(T � T 0) +  ̃a(T
0) + �(X � z) + �3/3

+N
Å
�4

3
z

3
2 +

1

�
B
⇣
�z

3
2

⌘ã
,

@z'a,N,�(T,X, T 0,�, z) =
T � T 0

2(1 + az)1/2
� � � 2Nz1/2

Å
1� 3

4
B0
⇣
�z3/2

⌘ã
.

Thus, 'a,N,� admits a unique critical point zc(T, T 0,�, a,�), and we are just
interested in values of the parameters such that zc is close to 1. With u =
(T�T 0

2 � �)/2N , this means u close to 1. Since � is close to [�1, 1] and N � 1,

we may thus assume T̃ = T/(4N) close to [1/2, 3/2], say T̃ 2 [1/4, 2]. We
denote by g(T̃ , T 0,�; a,N,�) various functions that are classical symbols of
degree 0 in � and with parameters a,N ; in particular, with w = (T̃ , T 0,�),
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for all ↵, there exists C↵ independent of a,N,� such that |@↵wg|  C↵ for all
T̃ 2 [1/4, 2] and all (T 0,�) close to (0, 0).

We denote by fk(a, T̃ , T 0/N,�/N) functions that are homogeneous of de-
gree k in (T 0/N,�/N). The notation Oj means any function of the form
f =

P
k�j fk. We will use the following functions:

F0 =
2T̃ 2

1 +
»
1 + 4aT̃ 2

,(2.42)

G�1
0 =F 1/2

0 (1 + aF0)
1/2
Å

1

F0
+

a

1 + aF0

ã
,

H0 =
1� F0p

1 + a+
p
1 + aF0

,

F1 =� G0

N

⇣
T 0/2 + �(1 + aF0)

1/2
⌘
.

Lemma 2.23.

(a) One has

zc = F0 + F1 +O2 + g0/�
2.

(b) The critical value  a,N,�(T̃ , X, T 0,�) = 'a,N,�(T,X, T 0,�, zc) is equal to

 a,N,� = (X � F0)� + �3/3 +H0T
0 +  ̃a(T

0)(2.43)

+
G0

2N(1 + aF0)1/2

⇣
�(1 + aF0)

1/2 + T 0/2
⌘2

� 1

12N2
(T 0/2 + �)3 + aNO3 + g1/�

2

+N
Å
4T̃�a(F0)�

4

3
F 3/2
0 + g2(T̃ , a,N,�)/�2

ã
.

Proof. (a) The equation for zc when � = 1 is

z1/2(1 + az)1/2 = T̃ � 1

2N

⇣
T 0/2 + �(1 + az)1/2

⌘
.

The solution of this equation is clearly of the form z =
P

fk(a, T̃ , T 0/N,�/N)
with f0 = F0 solution of F0(1+aF0) = T̃ 2, and we get F1 by a Taylor expansion
at order 1. Then (a) is a consequence of the implicit function theorem applied
to

z1/2(1 + az)1/2
Å
1� 3

4
B0
⇣
�z3/2

⌘ã
= T̃ � 1

2N

⇣
T 0/2 + �(1 + az)1/2

⌘
.

To prove part (b), one may of course insert the formula for zc into the definition
of 'a,N,�. Another way is to use

@�( a,N,� � �X � �3/3�  ̃a) =� zc,

@T 0( a,N,� � �X � �3/3�  ̃a) =� �a(zc).



362 OANA IVANOVICI, GILLES LEBEAU, and FABRICE PLANCHON

Using part (a), this system is easily seen to be integrable and yields formula
(2.43) up to an integration constant that is easy to compute when T 0 = � = 0.

Moreover, when a = 0 and � = 1, one has z1/2c = T̃ � 1
2N (T 0/2+�); therefore,

one can easily compute the value of the critical value when a = 0,� = 1, and
this provides the first two terms on the second line of (2.43). The proof of our
lemma is complete. ⇤

From aT 2 O(a1/2) and N��2 2 O(h⌫), we get @2z'a,N,� = �Nz�1/2 +
O(a1/2 + h⌫) for any z close to 1. Decreasing a0 and h0 if necessary, we get by
stationary phase,

(2.44)
Z

ei�'a,N,��(T 0,�, z; a, ~) dT 0d�dz

=
2⇡p
�N

Z
ei� a,N,� .�̃(T̃ , T 0,�; 1/N, a, ~) dT 0d�.

Here, �̃ is a classical symbol of degree 0 in ~, with harmless parameters a, 1/N .
Let us define �̃N,2(T,X, Y, h) by the following formula, where �̃=a3/2/h=�/⌘:

(2.45) �̃N,2(T,X, Y, h) =
Z

ei�̃⌘(Y+ a,N,⌘�̃)�̃⌘3/2�0(⌘)dT
0d�d⌘.

By (2.41) and (2.44), Proposition 2.15 is clearly a consequence of the following
estimate:

(2.46)
X

T/(4N)2[1/4,2]

1p
N

|�̃N,2(T,X, Y, h)|  C�̃�3/4,

with C independent of X 2 [0, 1], T 2]0, a�1/2], Y 2 R, a 2 [h↵, a0] and
�̃ 2 [�̃0,1[ with a0 small and �̃0 large.

Lemma 2.24. For all k, there exist Ck independent of X 2 [0, 1], T 2
]0, a�1/2], Y 2 R, a 2 [h↵, a0] and �̃ 2 [�̃0,1[ such that

X

N /2N1(X,Y,T )
T/(4N)2[1/4,2]

1p
N

|�̃N,2(T,X, Y, h)|  Ck�̃
�k.

Proof. Recall that T 0 = �2µ
p
1 + a+ aµ2. Let us define the functions

(see (2.11))

X = 1 + µ2 � �2,

Y = 2µ2(µ� �)H1 +
2

3
(�3 � µ3) + 4N

Ç
1� 3

4
B0
⇣
⌘�̃
⇣
1 + µ2

⌘ 3
2
⌘å

H2,

T = 2
»
⇢+ aµ2

Ç
� � µ+ 2N

»
1 + µ2

Ç
1� 3

4
B0
⇣
⌘�̃
⇣
1 + µ2

⌘ 3
2
⌘åå

.
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There exists a universal constant C0, with � = ⌘(Y + �a,N,⌘�̃), such that

(2.47) |X � X|+ |Y � Y|+ |T � T |  C0(|�0
⌘|+ |�0

T 0 |+ |�0
�|+ |�0

z|).

The left-hand side of (2.47) does not depend of z. Since G = ⌘(Y + �a,N,⌘�̃) is
a critical value of � with respect to z, we get

|X � X|+ |Y � Y|+ |T � T |  C0(|G0
⌘|+ |G0

T 0 |+ |G0
�|).

Consider any given (X,Y, T ). Then for N /2 N1(X,Y, T ), we have |x � X| +
|y �Y|+ |t� T | 6= 0 for all values of µ,�, ⌘, �̃, all |x�X|  1, all |y � Y |  1,
and all |t� T |  1. This implies |X � X|+ |Y � Y|+ |T � T | � 1. Therefore,
for all values of µ,�, ⌘, �̃, and N /2 N1(X,Y, T ), we get

|G0
⌘|+ |G0

T 0 |+ |G0
�| � 1/C0.

From (2.43), using ⌘@⌘ = �@�, N/�2 2 O(h⌫) and the fact that any function
of type NO3 is in O(N�2), we get that all the derivatives of G with respect
to ⌘, T 0,� are uniformly bounded. By integration by part in (2.45) we thus
get |�̃N,2|  Ck�̃�k for all k, with Ck independent of X 2 [0, 1], T 2]0, a�1/2],
Y 2 R, and N /2 N1(X,Y, T ). The proof of Lemma 2.24 is complete. ⇤

From Lemma 2.24, and since |N1(X,Y, T )| is uniformly bounded by Lemma
2.19, we get that (2.46) will be a consequence of

(2.48) 8N with T/(4N) 2 [1/4, 2],
1p
N

���
Z

ei� a,N,��̃dT 0d�|  C��3/4.

Hereafter we denote by C any constant that is independent ofN � 1,X 2 [0, 1],
T 2]0, a�1/2], a 2 [h↵, a0] and � 2 [�0,1[ with a0 small and �0 large.

Observe that we can now replace the phase  a,N,� by the phase

 a,N,� = (X � F0)� + �3/3 +H0T
0 +  ̃a(T

0)

+
G0

2N(1 + aF0)1/2
(�(1 + aF0)

1/2 + T 0/2)2 � 1

12N2
(T 0/2 + �)3 + aNO3

since by (2.43), the di↵erence  a,N,� � ( a,N,� + g1/�2) does not depend on
T 0,�, and eig1/� is a classical symbol of order 0 in �. We set � = eig1/��̃ and

recall ~ = a3/2/�. Then �(T 0,�; T̃ , a,N ;�) is a classical symbol of degree 0
in � � �0, compactly supported in (T 0,�) close to {0} ⇥ [�1, 1]. Moreover,
for all ↵, there exists C↵ independent of a,N and T̃ 2 [1/4, 2] such that
sup(T 0,�,�) |@↵(T 0,�)�|  C↵.

Lemma 2.25. There exists C such that for all N � �1/3,

(2.49)
1p
N

����
Z

ei� a,N,��dT 0d�
����  C��5/6.
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Proof. It is su�cient to prove that, for all N � �1/3,

(2.50)
����
Z

ei� a,N,��dT 0d�
����  C��2/3.

Set X � F0 = �A��2/3, H0 = �B��2/3, and perform a change of variable in
(2.50): T 0 = ��1/3x,� = ��1/3y. We are reduced to proving

(2.51)
����
Z

eiG�(��1/3x,��1/3y, . . . )dxdy
����  C,

with a phase G of the following form:

G = �Ay + y3/3�Bx+ � ̃a(�
�1/3x)(2.52)

+
G0�1/3

2N(1 + aF0)1/2
(y(1 + aF0)

1/2 + x/2)2

+N�2(x, y)3f(a, T̃ ,��1/3x/N,��1/3y/N).

Then (2.51) is an oscillatory integral over a domain of integration of size �1/3.
Parameters F0, G0,�1/3/N are bounded, and the main point is to prove that
the constant C is uniform in (A,B) = (r cos ✓, r sin ✓) with r  c0�2/3. Recall

� ̃a(��1/3x) = x3

24(1+a)3/2
(1 +O(ax2��2/3)). One has

@xG =�B + �2/3 ̃0
a(�

�1/3x) +O((x, y)) +O(1),

@yG =�A+ y2 +O((x, y)) +O(1).

Moreover, since � is compactly supported in (T 0,�), one has, with C↵ inde-

pendent of T̃ , a,N,�,

sup
(x,y)

|@↵(x,y)�(�
�1/3x,��1/3y, . . . )|  C↵(1 + |x|+ |y|)�|↵|.

Therefore, for any r0, the oscillatory integral (2.51) is clearly bounded for
0  r  r0. (Integrate by part for large (x, y).)

For r 2 [r0, c0�2/3], we rescale variables (x, y) = r1/2(x0, y0), and we set
G = r3/2G0 and �0(x0, y0, . . . ) = �(r1/2��1/3x0, r1/2��1/3y0, . . . ). Observe that

since r1/2��1/3 is bounded, we still have decay estimates

sup
(x0,y0)

|@↵(x0,y0)�
0|  C↵(1 + |x0|+ |y0|)�|↵|.

We have to prove

(2.53) r
����
Z

eir
3/2G0

�0dx0dy0
����  C.

First, the critical points of G0 satisfy
(2.54)

@x0G0 =� cos ✓ + r�1�2/3 ̃0
a(r

1/2��1/3x0) + r�1/2O((x0, y0)) + r�1O(1),

@yG =� sin ✓ + y02 + r�1/2O((x0, y0)) + r�1O(1).
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Let F (u) denote a smooth function near u = 0. We then have

r�1�2/3 ̃0
a(r

1/2��1/3x0) =
x02

8(1 + a)3/2

Ä
1 + ar��2/3x02F (a1/2r1/2��1/3x0)

ä
.

By (2.54), the contribution of large (x0, y0) to (2.53) is O(r�1), and we may
localize the integral on a compact set in (x0, y0). For | sin ✓| � 0.1 and r0 large,
we have two distinct nondegenerate critical points y0± = ±| sin ✓|1/2+O(r�1/2)
in y0 with critical values G0

±(x
0, . . . ), and thus by stationary phase we get

r
Z

eir
3/2G0

�0dx0dy0 = r1/4
ÇZ

eir
3/2G0

+�0
+dx

0 +
Z

eir
3/2G0

��0
�dx

0
å
.

Moreover, one has

@x0G0
±(x

0, . . . ) = @x0G0(x0, y0±, . . . )

= � cos ✓ + r�1�2/3 ̃0
a(r

1/2��1/3x0) +O(r�1/2),

and this implies |@3x0G0
±| � c0 > 0. Thus, we get

����
Z

eir
3/2G0

±�0
±dx

0
����  C(r3/2)�1/3 = Cr�1/2.

Therefore, (2.53) holds true, and in fact, we have the following better estimate
in the range r � 1:

r
����
Z

eir
3/2G0

�0dx0dy0
����  Cr�1/4.

If sin ✓ is close to 0, then we first perform the stationary phase in x0, and we
use the same arguments. This completes the proof of Lemma 2.25. ⇤

Therefore, we can now assume that �
N3 = ⇤ � 1, and we take ⇤ as our new

large parameter. We set X � F0 = �pN�2, H0 = �qN�2/2, and we change
variables in (2.48): T 0 = �2x/N,� = �y/N . We will prove

(2.55)
����
Z

ei⇤Ga�(x/N, y/N, . . . )dxdy
����  C⇤�3/4

with a phase Ga that takes the following form:

Ga = py � y3/3 + qx+N3 ̃a(�2x/N) +
G0

2(1 + aF0)1/2

Ä
y(1 + aF0)

1/2 + x
ä2

+
1

12N2
(x+ y)3 + aN�2(x, y)3f

Å
a, T̃ ,

x

N2
,
y

N2

ã
.

Observe that, for large N , (2.55) implies a better estimate that (2.46); more
precisely, (2.55) is equivalent to

(2.56)
1p
N

����
Z

ei� a,N,��̃dT 0d�
����  CN�1/4��3/4.

The above estimate is of course compatible with (2.49) for N ' ��1/3.



366 OANA IVANOVICI, GILLES LEBEAU, and FABRICE PLANCHON

Recall (see (2.2)) that  ̃a(T 0) = T 03

24(1+a)3/2
(1 + O(aT 02)). From (2.52) we

get
(2.57)

@xGa = q � x2 +
G0

(1 + aF0)1/2
(y(1 + aF0)

1/2 + x)+
1

4N2
(x+ y)2+aO((x, y)2),

@yGa = p� y2 +G0(y(1 + aF0)
1/2 + x) +

1

4N2
(x+ y)2 + aO((x, y)2),

and

@2x,xGa =� 2x+
G0

(1 + aF0)1/2
+

1

2N2
(x+ y) + aO((x, y)),

@2x,yGa =G0 +
1

2N2
(x+ y) + aO((x, y)),

@2y,yGa =� 2y +G0(1 + aF0)
1/2 +

1

2N2
(x+ y) + aO((x, y)).

Thus we get the value of the hessian HN (x, y; T̃ , a)

HN (x, y; T̃ , a) = det

Ç
@2x,xGa @2x,yGa

@2y,xGa @2y,yGa

å

= �2G0(x+ y) + 4xy � 1

N2
(x+ y)2 + aO((x, y)).

Lemma 2.26. There exist r0 and C such that for all (p, q) with |(p, q)|�r0,

(2.58)
����
Z

ei⇤Ga�(x/N, y/N, . . . )dxdy
����  C⇤�5/6.

Proof. Set (q, p)=(r cos ✓, r sin ✓) with r�r0 large. Let �2C1
0 (|(x, y)|<c)

with small c and � = 1 near 0. Then by (2.57) we get for all k by integration
by part in (x, y),

����
Z

ei⇤Ga�(r�1/2(x, y))�(x/N, y/N, . . . )dxdy
����  Ckr

�k⇤�k.

For the remaining term, we perform the change of variable (x, y) = r1/2(x0, y0)
and we set G0

a = r�3/2Ga. It remains to prove

(2.59)
����r
Z

eir
3/2⇤G0

a(1��)(x0, y0)�(r1/2x0/N, r1/2y0/N, . . . )dx0dy0
����  C⇤�5/6.

Observe that since (1��)(x0, y0) = 0 near 0, (1��)(x0, y0) = 1 for |(x0, y0)| � c,
and since �(u, v, . . . ) is compactly supported in (u, v), we still have

sup
(x0,y0)

|@↵(x0,y0)(1� �)(x0, y0)�(r1/2x0/N, r1/2y0/N, . . . )|  C↵(1 + |x0|+ |y0|)�|↵|.
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The phase G0
a is of the form

G0
a = sin ✓y0 � y03

3
+ cos ✓x0 � x03

3
+

1

12N2
(x0 + y0)3

+ r�1/2O((x0, y0)2) + aO((x0, y0)3),

where O((x0, y0)k) means any function of the form

x0jy0lf(r1/2x0/N, r1/2y0/N, a,N),

with f smooth uniformly in a,N and j + l = k. Thus for small a and large r0,
we may localize the integral (2.59) to a compact set in (x0, y0). (Integrate by
part.) The hessian of G0

a is equal to 4x0y0 � 1
N2 (x0 + y0)2 +O(r�1/2 + a). Thus

for N � 2, a small and r0 large, the set on which the hessian vanishes defines
a smooth curve � outside (x0, y0) = (0, 0), which is close to the union of the

two lines c(x0 + y0)± (x0 � y0) = 0, c2 = N2�1
N2 2 [3/4, 1]. Moreover, one has

@x0G0
a =cos ✓ � x02 +

1

4N2
(x0 + y0)2 +O(r�1/2 + a),

@y0G0
a =sin ✓ � y02 +

1

4N2
(x0 + y0)2 +O(r�1/2 + a).

The contribution of points (x0, y0) outside � to the left-hand side of (2.59) is
estimated by O(r�1/2⇤�1) by the usual stationary phase theorem. To estimate
the contribution of points (x0, y0) close to �, we use Lemma 2.21. For any value
of ✓, one gets easily that the hypothesis of part (a) of Lemma 2.21 holds true,
and this yields the estimate
����
Z

eir
3/2⇤G0

a(1� �)(x0, y0)�(r1/2x0/N, r1/2y0/N, . . . )dx0dy0
����  C(r3/2⇤)�5/6

= r�5/4⇤�5/6,

which provides the bound Cr�1/4⇤�5/6 on the right-hand side of (2.59). The
proof of Lemma 2.26 is complete. ⇤

We can now assume |(p, q)|  r0. There exists c > 0 independent of N � 2
such that

(2.60) 8(x, y) 2 R2,
����x

2 � 1

4N2
(x+ y)2

����+
����y

2 � 1

4N2
(x+ y)2

���� � c(x2 + y2).

Thus by integration by part, (2.57) yields that large values of (x, y) give a con-
tribution O(⇤�1) to the integral (2.55). We can then replace �(x/N, y/N, . . . )
by a symbol �(x, y, . . . ) compactly supported in the ball B = |(x, y)|  R with
R large. We are left to prove

(2.61)
����
Z

ei⇤Ga�dxdy
����  C⇤�3/4.
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Uniformly in N � 1 and T̃ near [1/2, 3/2] and (x, y) near B, we have

Ga =G0 +O(a),

G0 =qx� x3/3 + py � y3/3 +
T̃

2
(x+ y)2 +

1

12N2
(x+ y)3.

Note that the hessian of Ga is Ha = �2T̃ (x + y) + 4xy � 1
N2 (x + y)2 + O(a).

Therefore the set Za = {(x, y);Ha(x, y) = 0} is, for small a, a smooth curve in
B that is close to the parabola �2T̃ (x+ y)� (x� y)2 = 0 for N = 1 and close
to the hyperbola �2T̃ (x+ y) + 4xy � 1

N2 (x+ y)2 = 0 for N � 2. Moreover,

@xGa =q � X (x, y, a); X (x, y, a) = x2 � T̃ (x+ y)� 1

4N2
(x+ y)2 +O(a),

@yGa =p� Y(x, y, a); Y(x, y, a) = y2 � T̃ (x+ y)� 1

4N2
(x+ y)2 +O(a).

It remains to use Lemma 2.21 near any point (q, p), |(p, q)|  r0. If (q, p)
is not in the image of Za by the map (X ,Y), then near (q, p), the estimate
(2.61) holds true with a factor C⇤�1 on the right-hand side by the usual
stationary phase theorem. If (q, p) is in the image of Za by the map (X ,Y),
but (q, p) 6= (0, 0), then one easily verifies that part (a) of Lemma 2.21 applies,
and this gives near (q, p) the estimate (2.61) with a factor C⇤�5/6 on the right-
hand side. Finally, near (q, p) = (0, 0), one has (x, y) near (0, 0), and one easily
verifies that part (b) of Lemma 2.21 applies, and therefore (2.61) holds true.

This concludes the proof of Proposition 2.15. 2

Remark 2.27. Since the symbol � of degree 0 is elliptic at (x, y) = (0, 0),
the estimate (2.61) is optimal. To see this point, it is su�cient to apply part
(b) of Lemma 2.21 at (p, q) = (0, 0). Observe that by (2.42), (p, q) = (0, 0) is
equivalent to X = F0 = 1 and T = 4N

p
1 + a, i.e., equivalent to x = a, t =

4N
»
a(1 + a), which are precisely the times where a swallowtail occurs in the

wave front set of the Green function. This, and (2.56), proves Theorem 1.4.

2.6.5. Proof of Proposition 2.16. In order to prove Proposition 2.16, we
use as before the splitting �1 = �1,1 + �1,2. First, we prove

(2.62) |�1,1(T,X, Y, h)|  C(2⇡h)�2

 Å
h

a1/2T

ã1/2
+ h1/3

!

.

Going through the proof of Proposition 2.14, we notice only one di↵erence
between the case N = 1 and N � 2: namely for T 2]0, T0], when we estimateR
ei��1,+,+⇥+,+(z; a�)dz, we may have a critical point associated to a very large

value of z. Let �(z) 2 C1
0 (]z1,1[) with z1 large, and set

(2.63) J =
Z

ei��1,+,+⇥+,+(z; a�)�(z)dz.
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We will prove
a1/2|J |  Ca1/2��1/2T�1/2,

which clearly gives the first term on the right of the inequality (2.62). One has

@z�1,+,+ =
T

2
(1 + az)�1/2 � z�1/2

2
(1 +X) +O(z�3/2),(2.64)

@2z�1,+,+ =
�Ta

4
(1 + az)�3/2 +

z�3/2

4
(1 +X) +O(z�5/2).

Therefore, to get a large critical point zc, T must be small. (Recall that

T  T0 means t  a1/2T0.) One then has z�1/2
c ' T , and from (2.64) we

get @2z�1,+,+(zc) ' T 3. Recall that ⇥+,+(z, a,�) is a classical symbol in z of
degree �1/2, thus T�1s1/2⇥+,+(T�2s, a,�) is a symbol of degree 0 in s�s0>0,
uniformly in T 2]0, T0]. Therefore, if we perform the change of variable z =
T�2s in (2.63), we get |J |  C��1/2T�1/2 by stationary phase.

It remains to prove that the inequality (2.10) holds true for �1,2. The only
place where N � 2 gets used in the proof of Proposition 2.15 is Lemma 2.26
and inequality (2.60). But for N = 1, since �(x, y, . . . ) is compactly supported
in (x, y), we do not need the inequality (2.60). Moreover, we get from (2.57)
that the phase Ga has no critical points on the support of � for |(p, q)| � r0 if
r0 is large, and this implies for |(p, q)| � r0,

����
Z

ei⇤Ga�(x, y, . . . )dxdy
���� 2 O(⇤�1).

In fact, Lemma 2.26 is telling us that the constant C in the right of (2.58) is
uniform for large N . The proof of Proposition 2.16 is now complete. 2

3. Parametrix for 0 < a  h1/2

We will write the initial data with the help of gallery modes, which we first
describe in connection with the spectral analysis of our Laplace operator. We
describe the corresponding solutions of the wave operator. We then estimate
their L1(⌦) norm for tangent initial directions by using Sobolev embedding,
taking advantage of the size of the Fourier support. We deal with the nontan-
gent initial directions by constructing a crude parametrix, relying partly on
gallery modes and the asymptotics of the Airy function.

3.1. Whispering gallery modes. Let ⌦ = {(x, y) 2 R2|x > 0, y 2 R} de-
note the half-space R2

+ with the Laplacian given by �D = @2x + (1 + x)@2y
with Dirichlet boundary condition on @⌦. Taking the Fourier transform in the
y-variable gives

��D,⌘ = �@2x + (1 + x)⌘2.

For ⌘ 6= 0, ��D,⌘ is a self-adjoint, positive operator on L2(R+) with compact
resolvent. Indeed, the potential V (x, ⌘) = (1 + x)⌘2 is bounded from below,
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it is continuous and limx!1 V (x, ⌘) = 1. Thus one can consider the form
associated to �@2x + V (x, ⌘),

Q(u) =
Z

x>0
|@xv|2 + V (x, ⌘)|v|2dx,

D(Q) = H1
0 (R+) \ {v 2 L2(R+), (1 + x)1/2v 2 L2(R+))},

which is clearly symmetric, closed and bounded from below by a positive con-
stant c. If c � 1 is chosen such that ��D,⌘+c is invertible, then (��D,⌘+c)�1

sends L2(R+) in D(Q) and we deduce that (��D,⌘+c)�1 is also a (self-adjoint)
compact operator. The last assertion follows from the compact inclusion

D(Q) = {v|@xv, (1 + x)1/2v 2 L2(R+), v(0) = 0} ,! L2(R+).

We deduce that there exists a base of eigenfunctions vk of ��D,⌘ associated
to a sequence of eigenvalues �k(⌘) ! 1. From ��D,⌘v = �v we obtain
@2xv = (⌘2 � �+ x⌘2)v, v(0, ⌘) = 0, and after a suitable change of variables we
find that an orthonormal basis of L2([0,1[) is given by eigenfunctions

(3.1) ek(x, ⌘) = fk
⌘1/3

k1/6
Ai
⇣
⌘

2
3x� !k

⌘
,

where (�!k)k denote the zeros of Airy’s function in decreasing order and where
fk are constants so that kek(., ⌘)kL2([0,1[) = 1 for every k � 1, and all fk’s
remain in a fixed compact subset of ]0,1[. The corresponding eigenvalues are

�k(⌘) = ⌘2 + !k⌘
4
3 .

Remark 3.1. Let �x=a denote the Dirac distribution on R+, a > 0. Then
it reads as follows:

�x=a =
X

k�1

ek(x, ⌘)ek(a, ⌘).

We define the gallery modes as follows.

Definition 3.2. For x > 0, let Ek(⌦) be the closure in L2(⌦) of

n 1

2⇡

Z
eiy⌘ek(x, ⌘) k(⌘)d⌘,  ̂k 2 S(R)

o
,

where S(R) is the Schwartz space of rapidly decreasing functions,

S(R) =
n
f 2 C1(R), kz↵D�fkL1(R) < 1 8↵,� 2 N

o
.

For fixed k, a function in Ek(⌦) is called a whispering gallery mode.

We have the following result (see [7]).

Theorem 3.3. We have the orthogonal decomposition (L2(⌦),�D) =L
?Ek(⌦), where Ek(⌦) denotes the space of gallery modes associated to the

k-th zero of the Airy function Ai and where �D = @2x+(1+x)@2y with Dirichlet
boundary condition on @⌦.
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Proof. Indeed, from [7, §2.2] one can easily see that (Ek(⌦))k are closed,
orthogonal and that [kEk(⌦) is a total family (i.e., that the vector space
spanned by [kEk(⌦) is dense in L2(⌦)). ⇤

Let  j 2 C1
0 (]0,1[) as in Remark 1.11. Using Remark 3.1, for h 2 (0, 1],

we write the initial data, localized at frequency 1
h , as follows:

(3.2)  2(h
»
��g) 1(hDy)�x=a,y=0

=
X

1k

1

2⇡h

Z
e

i
hy⌘ 2(⌘

»
1 + !k(h/⌘)2/3) 1(⌘)ek(a, ⌘/h)ek(x, ⌘/h)d⌘.

Observe that in the sum over k, by Remark 1.11 we may assume k  "h�1

with " small. From (3.2) we get

ua,h(t, x, y) =e�it
p

��g 2(h
»
��g) 1(hDy)�x=a,y=0

(3.3)

=
X

1k

1

2⇡h

Z
e

i
h (y⌘�t⌘

p
1+!k(h/⌘)2/3) 2(⌘

»
1 + !k(h/⌘)2/3) 1(⌘)

ek(a, ⌘/h)ek(x, ⌘/h)d⌘ .

Our goal is to prove the following proposition.

Proposition 3.4. There exists C such that for every h 2]0, 1], every
0 < a  h1/2 and every t 2 [�1, 1], the following holds true:

(3.4) k1xaua,h(t, x, y)kL1  Ch�2min

 

1, h1/4 +

Ç
h

|t|

å1/3
!

.

This proposition will be proved in the next two sections. Proposition 3.4
clearly implies Theorem 1.3 for a  h1/2. By time symmetry, we may re-
strict ourselves to positive times t 2 [0, 1]. Notice that the proof for the wave
propagator exp(+it

p
��g) is exactly the same because the sign plays no role

whatsoever.

3.2. Tangential initial directions. In this section, we make use of the
Sobolev embedding properties related to the orthogonal basis (ek).

Lemma 3.5. There exists C0 such that for L � 1, the following holds true:

sup
b2R

Ç X

1kL

k�1/3Ai2(b� !k)

å
 C0L

1/3.

Proof. From |Ai(x)|  C(1 + |x|)�1/4, we get

J(b) =
X

1kL

k�1/3Ai2(b� !k) .
X

1kL

k�1/3 1

1 + |b� !k|1/2
.
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From !k ' k2/3, we get easily with C independent of L and D large enough,

sup
b0

J(b)  CL1/3, sup
b�DL2/3

J(b)  CL1/3.

Thus we may assume b = L2/3b0 with b0 2 [0, D]. Since !k = k2/3g(k) with g
being an elliptic symbol of degree 0, we are left to prove that

I(x) = L�1/3
X

1kL

(k/L)�1/3 1

1 + L1/3|x� (k/L)2/3|1/2

satisfies supx2R I(x)  C0L1/3. Since we can split [0, 1] into a finite union of

intervals on which the function t�1/3

1+L1/3|x�t2/3|1/2 is monotone, and since each

term in the sum is bounded by 1, we get

I(x) . C + L2/3
Z 1

0

t�1/3

1 + L1/3|x� t2/3|1/2
dt  Cte+ L1/3

Z 1

0

3

2|x� s|1/2
ds,

and the proof of Lemma 3.5 is complete. ⇤

Let ua,h,<L be the function defined by (3.3) with the sum restricted to
k  L. From (3.1), Lemma 3.5, and Cauchy-Schwarz inequality, one gets

kua,h,<L(t, x, y)kL1  C1h
�2h1/3L1/3.

Taking L = C/h, we get that Proposition 3.4 holds true for |t|  h. With
L = h�1/4 or L = 1/|t|, one sees also that (3.4) holds true for ua,h,<L. Thus
we are reduced to proving that (3.4) holds true for ua,h,>L, which is defined
by the sum over k � L with L � Dmax(h�1/4, 1/|t|) with a large constant D,
and where |t| > h.

3.3. Nontangential initial directions. In this section, by va,h(t, x, y) we
denote the function defined for h  t  1 by (3.3) with the sum restricted to
L  k  "/h, L � Dmax(h�1/4, 1/t), D > 0 large and " > 0 small. For each
value of k, we set

(3.5) � = t!kh
�1/3, µ =

ah�1/3

t!1/2
k

.

From !k ' k2/3, k � 1/t, and t � h, one has, for some c > 0, � � c; thus we
will take � as our large parameter. However, the parameter µ just satisfies

0  µ . h1/6

t
min(t1/3, h1/12)

and thus may be small or arbitrary large. Observe that for D large enough,
for k � Dh�1/4 and 0  x  a  h1/2, one has

!k � xh�2/3⌘2/3 � !k/2
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for all ⌘ in the support of  1. Therefore we can use the asymptotic expansion
of the Airy function from Section 2.2, with ! = ei⇡/4,

Ai(⇣) =
X

±
!±1e⌥

2
3 i(�⇣)

3/2
(�⇣)�1/4 ±(�⇣),

which is valid for �⇣ > 1, with �⇣ = !k � ⌘2/3h�2/3x � !k/2 � !1
2 > 1 since

!1 ⇡ 2.33. Thus from (3.3) we get

(3.6) va,h =
X

Lk"/h
wk, wk =

1

2⇡h

X

±,±

Z
ei��

±,±
k �±,±

k d⌘.

The phases �±,±
k and the symbols �±,±

k of wk read as follows, with the notation
z = h2/3!k⌘�2/3 � 2a:

h��±,±
k (t, x, y, ⌘, a) = ⌘

Å
y � t

p
1 + z ⌥ 2

3
(z � x)3/2 ⌥ 2

3
(z � a)3/2

ã
,

(3.7) �±,±
k (x, ⌘, a, h) = h�1/3⌘ 1(⌘) 2(⌘

p
1 + z)

f2
k

k1/3
!±!±

⇥ (z � x)�1/4(z � a)�1/4 ±(⌘
2/3h�2/3(z � x)) ±(⌘

2/3h�2/3(z � a)).

One has 3⌘@⌘ = �2z@z, and for 0  x  a  2z,

|(z@z)j((z � x)�1/4)|  Cjz
�1/4  C 0

j(hk)
�1/6;

moreover,  ± are classical symbols of degree 0 at infinity and

|⌘2/3h�2/3(z � x)| � !k/2 � Ch�1/6

since k � L � Dh�1/4. Therefore we get from (3.7) that for all j, there exists
Cj independent of h, k, a, x, ⌘ such that

(3.8)
����@

j
⌘�

±,±
k (x, ⌘, a, h)

����  Cj(hk)
�2/3.

Proposition 3.6. For " small, there exists C independent of a 2 (0, h1/2],
t 2 [h, 1], x 2 [0, a], y 2 R and k 2 [L, "/h] such that the following holds true:

(3.9)
����
Z

ei��
±,±
k �±,±

k d⌘
����  C(hk)�2/3��1/3.

Observe that from (3.6) and the definition (3.5) of �, (3.9) implies

k1xava,h(t, x, y)kL1  Ch�1
X

k"/h
(hk)�2/3t�1/3h1/9k�2/9

= Ch�2
Å
h

t

ã1/3
h1/9

Ñ
X

k"/h
k�8/9

é
 C 0h�2

Å
h

t

ã1/3
,

and therefore Proposition 3.4 holds true for va,h.



374 OANA IVANOVICI, GILLES LEBEAU, and FABRICE PLANCHON

Proof. Since from (3.8) the (hk)2/3�±,±
k are classical symbols of degree 0

compactly supported in ⌘, we intend to apply the stationary phase to an inte-
gral of the form

J =
Z

ei��
±,±
k gd⌘,

with g a classical symbol of degree 0 compactly supported in ⌘. We have to
prove uniformly with respect to the parameters the inequality

|J |  C��1/3.

Di↵erentiating the phase with respect to ⌘ yields

h�@⌘�
±,±
k = y � t

1 + 2
3zp

1 + z
± 2

3
x(z � x)1/2 ± 2

3
a(z � a)1/2,

where the two ± signs are independent from each other. (Thus, we have four
cases to consider.) Let � = x

a 2 [0, 1], ↵ = a
h2/3!k

and s = ⌘�2/3 2 [s0, s1].

Since D is large, one has ↵ 2 [0, c0] with c0 such that ⌘�2/3 = s � s0 � 2c0 on
the support of  1(⌘). Let X = y�t

t!kh2/3 , and define the function g(z) by

1 + 2
3zp

1 + z
= 1 + zg(z), g(z) =

1

6
+

z

24
+O(z2).

Then the derivative of the phase is equal to

@⌘�
±,±
k = X � sg(h2/3!ks) +

2

3
µ✓±,±, ✓±,± = ±�(s� �↵)1/2 ± (s� ↵)1/2.

We now study critical points. We take s = ⌘�2/3 as variable, and we get
(3.10)

@s@⌘�
±,±
k = �(g(z) + zg0(z)) +

µ

3

⇣
± �(s� �↵)�1/2 ± (s� ↵)�1/2

⌘
,

@2s@⌘�
±,±
k = �h2/3!k(2g

0(z) + zg00(z))� µ

6

⇣
± �(s� �↵)�3/2 ± (s� ↵)�3/2

⌘
.

Lemma 3.7. For " small enough, there exists c > 0 independent of k 
"/h such that

|@s@⌘�±,±
k |+ |@2s@⌘�

±,±
k | � c.

Proof. One has (s � ↵)�1/2 � �(s � �↵)�1/2; for " small, z = h2/3!ks is
small and thus g(z) + zg0(z) is close to 1

6 . Thus we get

|@s@⌘�±,�
k | � 1/10.

The derivative @s@⌘�
±,+
k may vanish but in case |@s@⌘�±,+

k |  1/100, the first
line of (3.10) implies

µ

3
(s� ↵)�1/2 � 0.05.
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The second line of (3.10) then gives a positive lower bound on |@2s@⌘�
+,+
k |. It

remains to study ��,+
k . For any function f , one has

(3.11) f(s� ↵)� �f(s� �↵) = (1� �)f(s� �↵)�
Z ↵(1��)

0
f 0(s� �↵� t)dt.

Taking f(t) = t�1/2, we thus find that

|@s@⌘��,+
k |  1/100 =) µ(1� �) � c > 0.

If one applies (3.11) with f(t) = t�3/2, we then find that for " small, the second
line of 3.10 implies |@2s@⌘�

�,+
k | � c/2. The proof of Lemma 3.7 is complete.

⇤

From Lemma 3.7 and 2.20, we get that Proposition 3.6 holds true in the
case where the parameter µ is bounded, since in that case all the derivatives of
order � 2 of the phase �±,±

k are bounded. It remains to study the case where
µ is large.

In cases (+,+) or (�,�), and µ large, we can take as large parameter
⇤ = �µ. Since (s � ↵)�1/2 + �(s � �↵)�1/2 � c > 0, we get in that case that
(3.9) holds true with a better factor (hk)�2/3⇤�1/2 on the right-hand side.

It remains to study the cases (+,�) and (�,+) for µ large. But in these
cases, we can use (3.11). Therefore, if µ(1� �) is bounded, all the derivatives
of order � 2 of the phase �±,⌥

k are bounded, and therefore from Lemmas 3.7
and 2.20, we get that Proposition 3.6 holds true.

Finally, in the cases (+,�) and (�,+) and µ(1� �) large, we can take as
large parameter ⇤0 = �µ(1� �), and since by (3.11) one has

|(s� ↵)�1/2 � �(s� �↵)�1/2| � c(1� �),

with c > 0, we get in that case that (3.9) holds true with a better factor
(hk)�2/3⇤0�1/2 on the right-hand side.

The proof of Proposition 3.6 is now complete. ⇤

This concludes the proof of Proposition 3.4.

4. Dimension d � 3

Let d � 3 and ⌦d = {(x, y) 2 R+ ⇥ Rd�1} with Laplace operator �d =
@2x + (1 + x)4y. The normal variable is still denoted x > 0, and the boundary
is still defined by the condition x = 0. Proofs of Theorems 1.3 and 1.4 follow
exactly along the same line as in the 2d case for both a . h1/2 and a � h4/7.
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4.1. Parametrix for a � h4/7. In higher dimensions the parametrix con-
struction is identical to the one in the two-dimensional case. We set ~ = h/|⌘|,
and we define v(t, x, y, h) with y 2 Rd�1 by

v(t, x, y, h) =
X

0NC0/
p
a

vN (t, x, y, h),

vN (t, x, y, h) =
1

(2⇡h)d

Z
ei

⌘
hyuN (t, x, h/|⌘|)|⌘|�0(|⌘|) d⌘,

with the same uN (t, x, h/|⌘|) as before. We take polar coordinates in ⌘ 2 Rd�1,
⌘ = |⌘|!. We thus get

(4.1) vN (t, x, y, h) =
1

(2⇡h)d

Z ⇣Z
ei

|⌘|
h (y.!)d!)uN (t, x, h/|⌘|

⌘
|⌘|d�0(|⌘|) d|⌘|.

In the above formula, apart from the harmless factor |⌘|d instead of |⌘|, we
have a superposition with respect to ! 2 Sd�2 of functions of the same type
as before, which are evaluated at z = y.!. We shall use the following lemma.

Lemma 4.1. Let  j 2 C1
0 (]0,1[). There exists c0 > 0 such that for every

a 2]0, 1] and every t 2 [h, 1],
(4.2)

hd| 1(h
p
��d) 2(h|Dy|)e±it

p
��d�x=a,y=0|L1(xa,|y|c0t) 2 O

ÅÅ
h

t

ã1ã
.

Proof. We may and will assume a  2t. In fact, for t  a/2, by finite speed
of propagation, the singular support of e±it

p
��d�x=a,y=0 has not reached the

boundary x = 0, and then (4.2) is a simple consequence of propagation of
singularities in the interior. (See the argument below.) Let T 2 [h, 1] be
given; perform the change of variable t = Ts, x = TX, y = TY , and set
fT (s,X, Y ) = f(Ts, TX, TY ). Then one has

(�df)T = T�2PT fT , PT = @2X + (1 + TX)4Y .

Set ~ = h/T  1. For any  , one has the identity ( (hDt,x,y)f)T =
 (~Ds,X,Y )fT , and therefore (4.2) is equivalent to the estimate at time s = 1:

| 1(~
p
PT ) 2(~|DY |)e±i

p
�PT �X=a/T,y=0|L1(Xa/T,|Y |c0) 2 O(~1).

Observe that b = a/T  2 is bounded. Since  2(~|DY |) commutes with the

flow e±i
p
�PT , using the Melrose-Sjöstrand theorem on propagation of singu-

larities at the boundary [12], we just need to verify the following: There exists
c0 > 0 such that for any T 2 [0, 1] and any optical ray s ! ⇢(s) associated to
the symbol ⇠2+(1+TX)⌘2 starting at t = 0 from ⇢(0) = (X = b, Y = 0; ⇠0, ⌘0)
with ⇠20+(1+Tb)⌘20 = 1 and |⌘0| � c1 > 0, one has |Y (⇢(1))| � 4c0. But on the
generalized bicharacteristic flow, one has @s⌘ = 0 and @sY = 2⌘(1 + TX(s))
and therefore Y (s) = ⌘0(g(s)) with g(s) � 2s, and the result is obvious. Ob-
serve that the cuto↵ by  2(h|Dy|) is essential to get the lower bound on |⌘0|.
The proof of Lemma 4.1 is complete. ⇤
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In order to prove our dispersive estimates, we may assume h  t  1,
and therefore by Lemma 4.1, we may also assume |y| � c0t � c0h. Classical
stationary phase in ! 2 Sd�2 gives
(4.3)
Z

ei
|⌘|
h (y.!)d! =

Ç
h

|⌘||y|

å d�2
2
Ç
e

i|⌘||y|
h �+

Ç
h

|⌘||y|

å
+ e

�i|⌘||y|
h ��

Ç
h

|⌘||y|

åå
,

where �± are classical symbols of degree 0 in the small parameter h
|⌘||y| . Insert-

ing (4.3) in (4.1), and since for |y| � c0t and |⌘| 2 [18 , 8] one has
Ä

h
|⌘||y|

ä d�2
2 

C(h/t)
d�2
2 , we easily see that the proof of Theorems 1.3 and 1.4 follows exactly

like in the 2d case.

4.2. Case a . h1/2. Indeed, the dispersive estimates follow once we notice
that Definition 3.2 and Theorem 3.3 extend to the d-dimensional domain ⌦d.
It is enough to define for x > 0, Ek(⌦d) to be the closure in L2(⌦d) of

n 1

(2⇡)d�1

Z
ei<y,⌘>Ai(|⌘|

2
3x� !k)'̂(⌘)d⌘,' 2 S(Rd�1)

o
,

where S(Rd�1) is the Schwartz space of rapidly decreasing functions,

S(Rd�1) =
n
f 2 C1(Rd�1)|kz↵D�fkL1(Rd�1) < 1 8↵,� 2 Nd�1

o
.

Theorem 4.2. We have the orthogonal decomposition (L2(⌦d),�d) =L
?Ek(⌦d), where Ek(⌦d) denotes the space of gallery modes associated to the

k-th zero of the Airy function Ai and where �d = @2x+(1+x)4y with Dirichlet
boundary condition on @⌦d.

Therefore, by Lemma 4.1 and (4.3), the proof of our main theorems follows
exactly like in the 2d case.

Appendix A. The energy critical nonlinear wave equation

We consider the equation

2gu+ |u|
4

d�2u = 0,

with data (u0, u1) 2 H1
0 (⌦d) ⇥ L2(⌦d), with 3  d  6. When the domain is

Rd, there is a long line of seminal works regarding this model, which may be
one of the simplest model of a critical wave equation. To our knowledge, the
first work to address the energy setting (as opposed to C1) is [15], where low
dimensions are dealt with, using only the oldest Strichartz estimates. (Time
and space exponents are equal.) Higher dimensions (d � 7) have their own set
of di�culties, mostly related to the low power nonlinearity (1+ 4/(d� 2) < 2)
and the subsequent failure of its derivative with respect to u to be Lipschitz.
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All these technical annoyances may be solved one way or another, but they are
out of the scope of the present paper.

Hence we contend ourselves with the low dimensions. There are essentially
two things to be checked:

• We have a “good” local Cauchy theory, providing energy class solutions.
• This local Cauchy theory may be tweaked so as to insert (a small power of)
the potential energy of the solution in the nonlinear estimates, so that we
can then perform the nonconcentration argument from [4] and extend our

solutions globally in time. Remark that the potential energy is kuk2d/(d�2)

L
2d/(d�2)
x

,

which corresponds to the critical nature of the equation, as by Sobolev
embedding, H1

0 ,! L2d/(d�2).

We refer to [9], [10] for details on how to deal with fractional derivatives,
Besov spaces on domains and product-type estimates. (Alternatively, one may
proceed with interpolation as in [4].)

Remark A.1. Note that in proving Theorem 1.7 from Theorem 1.3, one
needs, for p > 2, an embedding Ḃ0,2

p ⇢ Lp on domains, which may be proved
directly or follows from a Mikhlin-Hörmander multiplier theorem from Alex-
opoulos. (See [9] and references therein.)

Having these tools at hand, we may proceed exactly as in Rd, provided
we have the right set of exponents.

• Case d = 3: Theorem 1.7 allows for the Strichartz triplet (q = 4, r = 12,
� = 1) and one may proceed like in the R3 case. This was already observed
in [3] and allows for a streamlined argument when compared to [4].

• Case d = 4: Theorem 1.7 allows for the Strichartz triplet (q = 11/5,
r = 22/3, � = 1). As by Sobolev embedding we have H1

0 ,! L4
x, we may

write

|u|2u  |u|4/5|u|11/5 2 L1
t L5

x ⇥ L1
tL

5/3
x ⇢ L1

tL
2
x,

and we may proceed as in R4.
• Case d = 5: Theorem 1.7 allows for the Strichartz triplet (q = 2, r = 5,

� = 1). As by Sobolev embedding we have H1
0 ,! L10/3

x , we may write

|u|4/3u  |u|2|u|1/3 2 L1
tL

5/2
x ⇥ L1

t L10
x ⇢ L1

tL
2
x,

and we may proceed as in R5.
• Case d = 6: Theorem 1.7 allows for the Strichartz triplet (q = 2, r = 18/5,

� = 1). By Sobolev embedding Ḃ1/3,2
18/5 ,! L4

x, we get u 2 L2
tL

4
x which

provides a local Cauchy theory but without the potential energy factor.
However we may estimate

|u|u 2 L2
tL

4
x ⇥ L1

t Ḃ2/3,2
36/17 ⇢ L2

t Ḃ
2/3,2
18/13,
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which is the dual endpoint Strichartz space. As we may estimate the Ḃ2/3,2
36/17

norm of u in term of H1
0 and L3

x norms, we now have a good local Cauchy
theory, suitable to globalization in time.
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