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Consider the wave equation inside a domain Ω of dimension d ≥ 2:

(1)
{

(∂2
t −∆g)u(t, x) = 0, x ∈ Ω

u(0, x) = δa, ∂tu(0, x) = 0,

where a ∈ Ω, δa is the Dirac function and ∆g denotes the Laplace-Beltrami opera-
tor on Ω. In the case of a non empty boundary we consider the Diriclet condition
u|∂Ω = 0 on the boundary.

If Ω is the free space Rd with the Euclidian metric gi,j = δi,j and if uRd(t, x) is
the Green function (i.e. the solution to (1) in Rd) then it is given by

uRd(t, x) =
1

(2π)d

∫
cos(t|ξ|)ei(x−a)ξdξ

and it satisfies the classical dispersive estimates:

(2) ‖ψ(hDt)uRd(t, .)‖L∞(Rd) ≤ C(d)h−d min{1, (h/t)
d−1
2 }.

Here ψ ∈ C∞0 is a smooth function supported outside a neighborhood of 0.

In this note we are interested in domains with boundary: the difficulties arise
from the behavior of the singularities of the solutions to (1) near the points of
∂Ω. In the case of a concave boundary, sharp dispersive estimates should follow
using the Melrose and Taylor parametrix and the approach in [7]. In the opposite
situation of a strictly convex domain, the presence of the gliding rays prevent the
construction of such a parametrix.

Gilles Lebeau was the first who described in [6] the dispersive estimates on
small time intervals for the solutions of (1) inside a strictly convex domain (Ω, g)
of dimension d ≥ 2. The result he had announced reads as follows:

Theorem 1. If a > 0 is sufficiently small, then there exists T > 0, C > 0 so that
for every h ∈ (0, 1] and t ∈ (0, T ] the solution u to (1) satisfies

(3) |ψ(hDt)u(t, x)| ≤ C(d)h−d min{1, (h/t)
d−2
2 + 1

4 }.

Remark 2. The estimate (3) means that, compared to the dispersive estimate in
the free space (2), there is a loss of a power of 1

4 of h
t inside a strictly convex

domain, and this is due to micro-local phenomena such as caustics generated in
arbitrarily small time near the boundary. This loss is optimal.

Remark 3. In [6] Gilles Lebeau sketched the main steps of the proof and gave
a full description of the geometry behind. However, many details are missing
and therefore, our forthcoming work [5] in collaboration with Fabrice Planchon is
intended to complete the analytical part of Gilles Lebeau’s result.
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Remark 4. The loss of 1
4 comes only from the dispersion in the normal variable,

therefore it will be enough to prove the result in dimension d = 2 only.

Remark 5. Theorem 1 allows to prove sharp results in dimension d ≥ 2 for the
spectral projector estimates generalizing the work [8] in dimensions d ≥ 3 in the
case of convex domains. It also gives the sharp range of indices for which optimal
Strichartz estimates hold (this is a work in progress, in collaboration with Fabrice
Planchon); moreover, using (3) we can prove that the counterexamples constructed
in [3, 4] are optimal.

Proof. Before starting the proof, the first thing to understand is the type of con-
centration phenomena such as caustics that may occur near the boundary.

What are caustics? Caustics are envelopes of light rays that appear in a given
problem. At the caustic point the intensity of light is singularly large, causing
different physical phenomena. Mathematically, caustics could be characterized as
points were usual bounds on oscillatory integrals are no longer valid. It is well
known that the asymptotic behavior of an oscillatory integral is governed by the
number and the order of their critical points which are real. Let

(4) uh(z) =
1

(2πh)1/2

∫
ζ

e
i
h Φ(z,ζ)g(z, ζ, h)dζ, z ∈ Rd, ζ ∈ R, h ∈ (0, 1].

If there are degenerate critical points, known as caustics, then ‖uh(z)‖L∞ is no
longer uniformly bounded. The order of a caustic κ is defined as the infimum of κ′

so that ‖uh(z)‖L∞ = O(h−κ
′
). For example, recall that in [3] we considered phase

functions of the form ΦF (z, ζ) = ζ3

3 +z1ζ+z2 and obtained a loss in the Strichartz
estimates of 1

6 derivatives. This phase corresponds to a fold and has order precisely
κ = 1

6 . In the proof of Theorem 1 a crucial role will be played by the Pearcey type
integrals, with phase function of the form ΦC(z, ζ) = ζ4

4 +z1
ζ2

2 +z2ζ+z3 and order
κ = 1

4 . They correspond to a cusp type singularity; the swallowtail canonical form
involves the phase ΦS(z, ζ) = ζ5

5 + z1
ζ3

3 + z2
ζ2

2 + z3ζ + z4, with order k = 3
10 .

Let Ω = {(x, y) ∈ R2, x > 0} and ∆g = ∂2
x + (1 + x)∂2

y define a strictly
convex domain in R2. A first step in the proof of Theorem 1 consists in a detailed
description of the set of points of Ω which can be reached following all the optical
rays starting from a of length t. We split the data in packets in such a way that
each packet corresponds to a number of reflections on the boundary for a fixed time
T . At high frequency 1

h , the ”worst” packets will be those for which a ' h1/2 and
which propagate along directions parallel to ∂Ω. These localized data will involve
”swallowtail” type singularities in the wave front set of the solution. Hence it will
be sufficient to prove the estimates (3) for the following initial data:

u0(x, y) =
1

(2πh)2

∫
e

i
h ((x−a)ξ+yη)ψ(η)ρ(

ξ

h1/4η
)dξdη,

where ψ, ρ are smooth functions compactly supported in a neighborhood of 1 and
0, respectively, ψ ∈ C∞0 ( 1

2 , 2), ρ ∈ C∞0 (− 1
2 ,

1
2 ). If the initial distance a to the
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boundary is small, namely a ≤ h
1
2 , we use the fact that the essential support of

the Fourier transform of u remains small, together with the elementary estimate
[6][(2.24)]. For a > h1/2 we construct a parametrix u for small time t between
0 and the moment the wave reaches the boundary the first time; we then solve
the Airy equation with this data on the boundary. We repeat this construction a
number of times N ' 1√

a
. We obtain a parametrix of the form

Uh(t, x, y) =
N∑
n=0

un(t, x, y),

un(t, x, y) =
∫
e

i
hηφn(t,x,y,ξ)gnh(x, y, t, ξ)ψ(η)ρ(h−1/4(

a

ξ
− ξ

4
))dξdη.

The symbols gnh are chosen so that un to have almost orthogonal supports in
time and so that the Dirichlet condition to be satisfied. We study the asymptotic
behavior of the parametrices un. We otain the the equivalent of [6][Lemma 3.7]:

Theorem 6. For every n ∈ {1, .., N}, the phase φn has saddle points of order at
most 3; for each n ∈ {1, .., N} there exists a unique time t = tS,n for which φn(t)
has a critical point ξS of order 3.

From the above Lemma it follows, using Arnold’s classification, that φn is a
Pearcey type integral with order 1

4 . Writing the asymptotic expansion of un(t)
near tS,n, we deduce that a loss of 1

4 powers of |t|h is unavoidable for ‖un‖L∞ .

Theorem 7. The loss of 1
4 powers of |t|h in the dispersive estimates (3) is optimal

in any dimension d ≥ 2.

The optimality follows from the fact that there is a swallowtail type singularity
in the wavefront set WFh(un) for each n ∈ {1, .., N}. Then use Remark 4. �
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