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Consider the wave equation in a domain Ω of dimension d ≥ 2:

(1)

{
(∂2
t −∆g)u(t, x) = 0, x ∈ Ω

u(0, x) = δa, ∂tu(0, x) = 0,

where a ∈ Ω, δa is the Dirac function and ∆g denotes the Laplace-Beltrami oper-
ator on Ω. If ∂Ω 6= ∅ we consider the Dirichlet condition u|∂Ω = 0.

Let Ω be the free space Rd with the Euclidian metric gi,j = δi,j and χ ∈ C∞0 be
a smooth function supported near 1. If uRd(t, x) is the solution to (1) in Rd then
it is given by

uRd(t, x) =
1

(2π)d

∫
cos(t|ξ|)ei(x−a)ξdξ

and it satisfies the classical dispersive estimates:

(2) ‖χ(hDt)uRd(t, .)‖L∞(Rd) ≤ C(d)h−d min{1, (h/t)αd}.

Interpolating between (2) and the energy estimate and using the so called TT ∗

argument, yields the following Strichartz estimates:

(3) hβ‖χ(hDt)u‖Lq([0,T ],Lr(Rd)) ≤ C
(
‖u(0, x)‖L2 + ‖hDtu‖L2

)
.

Here q ∈ (2,∞], r ∈ [2,∞] satisfy (q, r, d) 6= (2,∞, 3), 2
q + d−1

r ≤
d−1

2 and

1

q
= αd

(1

2
− 1

r

)
, β = (d− αd)

(1

2
− 1

r

)
.

Our aim in the present note, based on [3], is to obtain Strichartz estimates inside
domains: in this situation, the difficulties arise from the behaviour of the wave
flow near the points of the boundary. Before stating our main result, we briefly
introduce the Friedlander’s model domain of the half space Ωd = {(x, y)|x >
0, y ∈ Rd−1} with Laplace operator given by ∆F = ∂2

x + (1 + x)∆Rd−1
y

. Clearly,

the manifold Ω with the metric gF inherited from ∆F is a strictly convex domain;
moreover, (Ω2, gF ) may be seen as a simplified model for the diskD(0, 1) with polar
coordinates (r, θ), where r = 1− x/2, θ = y. Our main result is the following:

Theorem 1. [3] Strichartz inequality holds true for the solution to (1) inside
(Ωd, gF ) with αd = d−1

2 −
1
6 .

Remark 2. This was proved by M.Blair, H.Smith and C.Sogge in the case d = 2
for arbitrary boundary (i.e. without convexity assumption). The above theorem
improves all the known results for d ≥ 3. The case of a general strictly convex
boundary is a work in progress with G.Lebeau, F.Planchon and R.Lascar.

In [2], we proved the following dispersive estimate for (Ωd, gF ), d ≥ 2:
1



Theorem 3. There exists T > 0, C(d) > 0 such that for every a ∈ (0, 1], h ∈ (0, 1]

and t ∈ (0, T ] the solution ua(t, x, y) = cos(t
√
|∆F |)(δx=a,y=0) to (1) satisfies

(4) |χ(hDt)u(t, x)| ≤ C(d)h−d min{1, (h/t)
d−2
2 γ(t, h, a)},

where

γ(t, h, a) =

{
(ht )1/2 + a1/8h1/4, for a ≥ h4/7−ε

(ht )1/3 + h1/4, for a ≤ h1/2.

Moreover, there is a sequence of moments of times tn = 4n
√
a
√

1 + a for which

equality holds in (4); for t /∈ (tn− εa
1/2

n , tn+ εa
1/2

n ) := In, γ(t, h, a) can be bounded

by (ht )1/3 independently of a.

Remark 4. The estimate (4) means that, compared to the dispersive estimate in
the free space (2), there is a loss of a power of 1

4 of h inside a strictly convex
domain, and this is due to micro-local phenomena such as caustics generated in
arbitrarily small time near the boundary. Such caustics occur because optical rays
sent from a source point under different directions are no longer diverging from
each other.

Remark 5. As a corollary to Theorem 3, we immediately obtain Strichartz esti-
mates in any dimension d ≥ 2 with αd = d−2

2 + 1
4 .

Proof. (of Theorem 1) We distinguish two different regimes:

• In the range t > h and a < h1/2+ε, we prove the stronger estimate

|χ(hDt)ua(t, x, y)| ≤ Ch−d(h
t

)
d−2
2 (

h

t
)1/3.

This means that in the range a < h1/2+ε, one can kill the bad factor h1/4

of Theorem 3. The geometry is irrelevant when a is very small, since there
are too many singularities in the wave front set and the new estimates are
obtained using a finer analysis on the sum of gallery modes (inspired by
exponential sum methods). Using the spectral decomposition, we obtain
an explicit representation of the Green function as a sum of gallery modes,
valid for any a. Taking its Poisson transformation yields a superposition
of waves similar to the parametrix we obtained in [2] for a > h4/7−ε.
• In the range a > h4/7−ε, we observe that the ”bad” factor h1/4 occurs only

near the discrete set of times tn, with an estimation of γ(t, h, a) for t near
tn (t ∈ In) by

(5) γ(t, h, a) ≤ (
h

t
)1/2 + h1/3 +

a1/8h1/4

n1/4 + h−1/12a−1/24|t2 − t2n|1/6
.

Notice also that for t /∈ In, the last factor is ≤ h1/3. The refinement
on γ(t, h, a) follows from inspection of the (degenerate) stationary phase
argument in [2]
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End of the proof: For simplicity restrict to Strichartz with αd = d−1
2 −

1
6 for d = 3.

We consider the Green function G(t, x, y, a) = χ(hDt)e
it
√
|∆F |(δx=a,y=0) and for

f compactly supported in (s, a ≥ 0, b) we set

A(f)(t, x, y) =

∫
G(t− s, x, y − b, a)f(s, a, b)dsdadb.

The dispersive exponent is in this case α3 = 5
6 . We have to prove the end point

estimate for r =∞ and q = 12/5:

h2β‖A(f)‖
L

12/5

t∈[0,1]L
∞
x,y
≤ C‖f‖

L
12/7
s L1

a,b

, 2β = (d− αd) = 3− 5/6 = 13/6.

We summarise: the swallowtail singularities occur only at tn = 4n
√
a, x = a,

yn := tn +O(a3/2n); they have an effect on In := (tn − ε
√
a
n , tn + ε

√
a
n ). outside In

there are only cusps with (ht )−1/6 loss. The estimate of γ(t, h, a) in (5) allows to
track precisely where the usual TT ∗ argument fails.

We write G(t, x, y, a) = G0(t, x, y, a) + Gs(t, x, y, a) where Gs is the singular
part, associated to a cutoff of G in balls centred at the swallowtail singularities

|x− a| ≤ a

n2
, |t− 4n

√
a
√

1 + a| ≤
√
a

n
.

Going back to [2], we obtain the following:

Proposition 1.
h2β sup

x,y
|G0(t, x, y, a)| ≤ C|t|−5/6;

h2β sup
x,y
|Gs(t, x, y, a)| ≤ D(t, a, h), sup

a,h

∫ 1

−1

|D(t, a, h)|pdt <∞, ∀p < 2.

Let A = A0 + As corresponding to the previous decomposition. The estimate
for A0 follows easily, since the convolution by |t|−5/6 maps L12/7 in L12/5. By the
preceding proposition, h2βAs is bounded from L1

sL
1
a,b into L2−ε

t L∞x,y. Since the

cutoff in balls near the swallowtails singularities is symmetric in (x, a), by duality,
h2βAs is bounded from L2+ε

s L1
a,b into L∞t L

∞
x,y and, by interpolation, we get

h2βAs is bounded from L12/7
s into L12−ε

t L∞x,y,

which is more than enough.
�
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