Analysis of the geometrical effects on dispersive equations

Oana Ivanovici

Laboratoire Jacques-Louis Lions CNRS & Sorbonne Université

HDR

March 31, 2021

Mathematical description of waves, at least to first approximation, is the same in many different settings.

► The (scalar) wave equation

$$\left(\frac{\partial^2}{\partial t^2} - \Delta\right) u = 0$$
 on $\mathbb{R} \times \mathbb{R}^d$, with $\Delta = \sum_{i=1}^d \frac{\partial^2}{\partial x_i^2}$.

A close relative is the Schrödinger equation (especially in the "semi-classical" setting h → 0) :

$$ih\partial_t v + h^2 \Delta v = 0$$
 on $\mathbb{R} \times \mathbb{R}^d$.

Dispersive decay is a quantitative version of this picture.

My main contributions

- Inside convex domains: Schrödinger & wave equations
 - optimal dispersive estimates (for both equations) :
 - * approximate solutions going over infinitely many caustics;
 - sharp pointwise bounds for the Green function;
 - Ing time estimates in the Friedlander domain for wave and Klein-Gordon equations.

- Strichartz estimates : positive results (**better** than expected from dispersion) and **counterexamples** (worst than without boundary)

- In exterior domains: Schrödinger & wave equations
 - **sharp** dispersion in **3D**, **sharp** Strichartz for Schrödinger $\forall D$;
 - **counterexamples** to dispersion in higher dimensions $D \ge 4$:
 - ★ highlight strong diffractive effects.

The dispersive estimates measure the uniform decay properties of the evolution flow as a function of time.

• The wave flow : $h \in (0, 1), \chi \in C_0^{\infty}(1/2, 2)$

$$\sup \left| \chi(hD_t) e^{\pm it|\sqrt{-\Delta_{\mathbb{R}^d}}} (\delta_{Q_0}) \right| \lesssim \frac{1}{h^d} \min \left\{ 1, \left(\frac{h}{|t|} \right)^{\frac{d-1}{2}} \right\}$$

• The semi-classical Schrödinger flow (for $t \ge h$)

$$\sup \Big| \chi(hD_t) e^{\pm i \frac{t}{h} \Delta_{\mathbb{R}^d}} (\delta_{Q_0}) \Big| \lesssim \frac{1}{h^d} \min \Big\{ 1, \Big(\frac{h}{|t|} \Big)^{\frac{d}{2}} \Big\}.$$

 Q_0 = the source point, t = the elapsed time, 1/h = the frequency.

For waves, this holds in \mathbb{R}^d or on manifolds without boundary as long as time is less than the injectivity radius.

The Strichartz estimates measure average decay (L^2 data).

Admissible indices (q, r): $q, r \ge 2$, $(q, r, \alpha) \ne (2, \infty, 1)$, $\frac{1}{q} \le \alpha(\frac{1}{2} - \frac{1}{r})$.

► for the wave flow : $(\partial_t^2 - \Delta)u = 0$, $u|_{t=0} = u_0$, $\partial_t u|_{t=0} = u_1$

 $h^{(d-\alpha)(\frac{1}{2}-\frac{1}{r})}\|\chi(hD_t)u\|_{L^q([0,T],L_X')} \lesssim \|u_0\|_{L^2} + \|hu_1\|_{L^2}.$

► for the semi-classical Schrödinger : $ih\partial_t v + h^2 \Delta v = 0$, $v|_{t=0} = v_0$

 $h^{(d-\alpha)(\frac{1}{2}-\frac{1}{r})} \|\chi(hD_t)v\|_{L^q([0,T],L_x^r)} \lesssim \|v_0\|_{L^2}.$

(q, r) is a Schrödingeradmissible pair if $\alpha_{S,d} = \frac{d}{2}$.

 \mathbb{R}^d with flat metric (wave and Schrödinger): Strichartz, Pecher, Ginibre-Velo, Lindblad-Sogge, Keel-Tao... $\partial \Omega = \emptyset$ (wave): Kapitanski, Mockenhaupt-Seeger-Sogge, Smith, Bahouri-Chemin, Tataru...

 $\partial \Omega = \emptyset$ (Schrödinger): Staffilani-Tataru, Burq-Gérard-Tzvetkov...

Goal :

- Study wave dispersion and concentration near a boundary (in highly non-trivial geometries)
- Develop new tools (efficient wave packets methods, sharp quantitative refinements of propagation of singularities, etc);
- Apply to **nonlinear** problems, **control** theory, etc.

\simeq 1980 : Boundary problems and propagation of singularities

- available approximate solutions Melrose-Taylor, Eskin
- or microlocal energy methods Melrose-Sjöstrand, Ivrii
 - do NOT provide an accurate description of the amplitude of the wave ... have NO use in obtaining dispersion
 - do NOT capture the separation of optimal wave packets

Geometry of the wavefront

Propagation of a spherical wave: singularities are located on the sphere of radius *t*, centered at the source point (like in the picture).

If non-empty boundary: the "sphere" of radius t = WAVEFRONTmay undergo dramatic changes compared to the flat case !

Part of the **wavefront** near a point of strict convexity after only 5 reflections.

Possible dispersive estimates should reflect the geometry of the domain and especially its boundary.

* The wavefront inside a convex : the "sphere" of radius *t* soon degenerates and develops singularities in arbitrarily small times.

The wave **shrinks** in size between two consecutive reflections and its **maximum increases**.

* Near a concave boundary : rays can <u>stick</u> to the boundary and re-release energy near the "shadow region", producing diffractive effects (e.g. the Poisson-Arago spot).

State of the art in 2010 : general domains

 $\star \Omega = \mathbb{R}^d \setminus \Theta, \Theta$ non-trapping, Δ_D : Burq-Gérard-Tzvetkov, Robbiano-Zuily (in connection with local smoothing or local energy decay)

* Ω compact, $\partial \Omega \neq \emptyset$: Smith-Sogge, Koch-Tataru, Anton, Blair-Smith-Sogge, etc

 \Rightarrow reduction to the boundary-less case with Lipschitz metric across an interface :

- may handle any boundary (higher order tangency points ...)
- BUT blind by design to the full effect of dispersion ! (reduces to wave packets that cross the boundary only once)

Dispersion in the exterior of a ball

Theorem : ([I. & Lebeau], 2020) Let $\Omega_d = \mathbb{R}^d \setminus B_d(0, 1)$.

- If d = 3, the dispersive estimates for the wave and Schrödinger equations inside Ω₃ with Dirichlet condition hold true.
- If $d \ge 4$, these estimates fail at the **Poisson-Arago spot**.

- Recall : Strichartz (without loss) for waves [Smith & Sogge, 1995] and for Schrödinger [I., 2010]. For dispersion, [Li,Smith & Zhang, 2012] outside a ball, only for spherically symmetric data.
- ★ For $d \ge 4 \Rightarrow$ first example of a domain on which global Strichartz estimates do hold like in \mathbb{R}^d while dispersion fails.
- A loss in dispersion occurs only for obstacles which "look very much" like a sphere (at least viewed from specific locations).
- * For wave and Schrödinger equations, the mathematical landscape is now well understood.

Theorem: ([Hargé & Lebeau], 1994 - Keller's theorem for C^{∞} boundary) The **decreasing rate** in the shadow region is of the form $e^{-C\tau^{1/3}}$, $C = C(\partial \Omega)$, $\tau \sim$ frequency.

Estimates at the Poisson spot

if $Q_{\pm}(r) =$ **source** / **observation** points at (same) distance *r* from the ball, symmetric w.r.t. the center of the unit ball $B_d(0, 1)$ of \mathbb{R}^d , then

• Wave flow: take $r \sim h^{-1/3}$, $t \sim 2h^{-1/3}$

$$|(\chi(hD_t)e^{i2h^{-1/3}\sqrt{|\Delta|}}(\delta_{Q_-})|(Q_+) \sim \frac{1}{h^d}(\frac{h}{2h^{-1/3}})^{-\frac{d-1}{2}}h^{-\frac{d-3}{3}},$$

• (classical) Schrödinger flow: take $r \sim h^{-1/6}$, $t \sim h^{1/3}$

$$|(\chi(hD_t)e^{ih^{1/3}\Delta}(\delta_{Q_-})|(Q_+)\sim (h^{1/3})^{-\frac{d}{2}}h^{-\frac{d-3}{6}}$$

Construction of a parametrix outside a convex in 3D

- * If the source Q_0 is "far" and the observation point Q is "close" to $\partial \Omega$
 - use [Melrose-Taylor], [Zworski] : yields a parametrix for Q near the apparent contour of Q₀ (see [Smith-Sogge, 1995], [Zworski,1990]).

Theorem [Melrose & Taylor], [Zworski] : $\exists \theta, \zeta$ phase functions **near a** glancing point, $\exists p_0, p_1$ symbols (with p_0 elliptic, $p_1|_{\partial\Omega} = 0$) s.t.

for every solution V to $(\tau^2 + \Delta) \mathbf{V} \in \mathbf{O}_{\mathbf{C}^{\infty}}(\tau^{-\infty}) \quad \exists F \text{ s.t.}$

 $V(\tau, Q, Q_0) = T_{\tau}(F)$, Q near the glancing point,

$$T_{\tau}(F)(Q,Q_0):=\left(\frac{\tau}{2\pi}\right)^2\int e^{i\tau\theta(Q,\eta)}\Big(p_0Ai+p_1\tau^{-1/3}Ai'\Big)(\tau^{2/3}\zeta(Q,\eta))\hat{F}(\tau\eta)d\eta.$$

- apply to $V = \widehat{u_{free}}(\tau, Q, Q_0) = \frac{\tau}{|Q Q_0|} e^{-i\tau |Q Q_0|}$ and find \hat{F} ;
- replace F then use it to bound the "outgoing wave"

$$\left(\frac{\tau}{2\pi}\right)^{2} \int e^{i\tau\theta} \left[p_{0} A_{+}(\tau^{2/3}\zeta) + p_{1}\tau^{-1/3} A_{+}'(\tau^{2/3}\zeta) \right] \frac{Ai}{A_{+}}(\tau^{2/3}\zeta|_{\partial\Omega}) \hat{F}(\tau\eta) d\eta.$$

- \star If the source \textit{Q}_0 and the observation point Q are "far" from $\partial \Omega$
 - Reduce the problem to obtaining estimates for

$$U(t, Q, Q_0) := \int_{\partial\Omega} \frac{(\partial_n u_{\text{free}}|_{\partial\Omega} - \mathsf{N}(u_{\text{free}}|_{\partial\Omega}))(t - |Q - P|, P, Q_0)}{4\pi |P - Q|} d\sigma(P).$$

- ► use NOW [Melrose-Taylor] to obtain (∂_nu_{free}|∂Ω - N(u_{free}|∂Ω))(t, P, Q₀) in terms of Airy functions for P near the apparent contour of Q₀.
- higher dimensions : for the Poisson spot, rotational symmetry.
- ▶ for a general concave boundary finding *F* doesn't help...

Construction of a parametrix outside a convex in 3D

- * If Q_0 and Q are "very close" to $\partial \Omega$: [Melrose-Taylor] not available
 - ▶ use spherical harmonics $Y_{m,j}$ (eigenfunctions of $-\Delta_{S^2}$) to obtain

$$\chi(hD_t)U(t, Q, Q_0) = \sum_{m \ge 0} Z^m_{Q_0}(\frac{Q_0}{|Q_0|}) \int_0^\infty e^{it\tau} \chi(h\tau) G_{m+1/2}(|Q|, |Q_0|, \tau) d\tau,$$

$$G_{m+1/2}(r, s, \tau) = \frac{\pi}{2i\sqrt{rs}} \Big(J_{m+1/2}(s\tau) - \frac{J_{m+1/2}(\tau)}{H_{m+1/2}^{(1)}(\tau)} H_{m+1/2}^{(1)}(s\tau) \Big) H_{m+1/2}^{(1)}(r\tau),$$

• most delicate situation : $\tau/m = 1 + O(m^{-2/3})$ when

 $H_{m+1/2}^{(1)}$, $J_{m+1/2}$ read in terms of $Ai(\tau^{2/3}\zeta)$ (same as in [Melrose-Taylor] ! \Rightarrow discrete sum instead of integral formula)

* for Schrödinger equation : use the Kanaï transform

 \star for small frequencies : use the exterior Dirichlet problem for the Helmholtz equation and acoustic surface potentials for general C^2 boundaries.

Theorem: ([I., Lebeau & Planchon, '14]; [I., Lascar, Lebeau & Planchon, '20]) Let (Ω, g) be a strictly convex domain; $Q_a \in \Omega$ at distance a > 0 from $\partial\Omega$, δ_{Q_a} = Dirac at Q_a . The Dirichlet wave flow satisfies, for $h < |t| \leq 1$

$$\|\chi(hD_t)e^{it\sqrt{-\Delta_g}}(\delta_{Q_a})\|_{L^{\infty}(\Omega)} \lesssim \frac{1}{h^d} \left(\frac{h}{|t|}\right)^{\frac{(d-1)}{2}} \left[a^{\frac{1}{4}}(h/|t|)^{-\frac{1}{4}} + (h/|t|)^{-\frac{1}{6}}\right].$$

- The result is optimal because of the presence of swallowtail singularities in the wave front set.
- First result describing exactly the amplitude of the wave over infinitely many reflections

Model for convex boundaries

Same to first order under r = 1 - x/2, $\theta = y$.

Model for convex boundaries

* The operator $-\partial_x^2 + (1 + x)\eta^2$ has eigenfunctions and eigenvalues:

$$e_k(x,\eta) = \frac{\eta^{1/3}}{\sqrt{L'(\omega_k)}} Ai(\eta^{2/3}x - \omega_k)$$
 associated to $\lambda_k(\eta) = \eta^2 + \omega_k \eta^{4/3}$

★ $(e_k)_{k\geq 1}$ forms an $L^2(0,\infty)$ orthonormal basis, $Ai(-\omega_k) = 0$.

Airy function Ai''(z) = zAi(z)

• Integral formula :
$$Ai(-z) = (2\pi)^{-1} \int e^{i(\sigma^3/3 - z\sigma)} d\sigma$$
.

► Let
$$L(\omega) = \pi + i \log \frac{A_{-}(\omega)}{A_{+}(\omega)}$$
 where $A_{\pm}(\omega) \sim \frac{1}{\omega^{1/4}} e^{\pm \frac{2}{3}i\omega^{\frac{3}{2}}}$. Then
 $L(\omega) = \frac{4}{3}\omega^{\frac{3}{2}} + \frac{\pi}{2} - O(\omega^{-\frac{3}{2}}), \quad L'(\omega_k) = \int_0^\infty A i^2 (x - \omega_k) \, dx.$

"Airy-Poisson" formula :

$$2\pi \sum_{k \in \mathbb{N}^*} \frac{1}{L'(\omega_k)} \phi(\omega_k) = \sum_{N \in \mathbb{Z}} \int e^{-iNL(\omega)} \phi(\omega) \, d\omega \, .$$
$$e^{-iNL(\omega)} = (-1)^N \Big(\frac{A_-(\omega)}{A_+(\omega)}\Big)^N.$$

Parametrix for $\partial_t^2 u - (\partial_x^2 + (1+x)\partial_y^2)u = 0$ for $x > 0, y \in \mathbb{R}, u|_{x=0} = 0$

► Seek $u(t, x, y) = \int e^{iy\eta} \chi(h\eta) w(t, x, \eta) d\eta, \ \chi \in C_0^{\infty}(\frac{1}{2}, 2), \ h \in (0, 1),$ $\partial_t^2 w - (\partial_x^2 - (1 + x)\eta^2) w = 0, \quad w|_{x=0} = 0.$

If
$$w|_{t=0} \in L^2(0,\infty)$$
,
 $w(t,x,\eta) = \sum_{k\geq 1} e^{it\sqrt{\lambda_k(\eta)}} e_k(x,\eta) < e_k(\cdot,\eta), w|_{t=0} >_{L^2(0,\infty)}$.

• Dirac distribution : $\delta_{x=a} = \sum_{k\geq 1} e_k(x,\eta) e_k(a,\eta), \forall \eta \neq 0.$

• Let $w|_{t=0}(x,\eta) = \chi(h\sqrt{-\Delta_F})\delta_{x=a}$, $w(t,x,\eta) = \sum_{k=1}^{C/h} e^{it\sqrt{\lambda_k(\eta)}} e_k(x,\eta) e_k(a,\eta)$.

► Localize w.r.t. $(-\partial_x^2/\eta^2 + x)$: as $(-\partial_x^2/\eta^2 + x)e_k = \omega_k \eta^{-2/3}e_k$

$$\psi\left((-\partial_x^2/\eta^2+x)/a\right)w(t,x,\eta)=\sum_{k=1}^{C/h}e^{it\sqrt{\lambda_k(\eta)}}e_k(x,\eta)e_k(a,\eta)\psi(\omega_k\eta^{-2/3}/a).$$

Worst packet : $x + (\xi/\eta)^2 \sim a$, small angle $|\xi/\eta| \lesssim \sqrt{a}$

Introducing $\psi(\omega_k \eta^{-2/3}/a)$ reduces the sum to

$$W_{a}(t,x,\eta) := \sum_{k\sim\lambda} e^{it\sqrt{\eta^{2}+\omega_{k}\eta^{4/3}}} \frac{\eta^{2/3}}{L'(\omega_{k})} Ai(\eta^{\frac{2}{3}}x-\omega_{k}) Ai(\eta^{\frac{2}{3}}a-\omega_{k}).$$

As $\omega_k \sim k^{2/3}$, $\eta \sim 1/h \Rightarrow$ the sum reduces to $k \sim \lambda := \frac{a^{3/2}}{h}$.

* If $a \lesssim h^{2/3}$ then $\lambda \lesssim 1$: bounded number of "gallery modes".

Using Airy-Poisson formula for w_a : $w_a(t, x, \eta) = \sum_{N \in \mathbb{Z}} w_{N,a}(t, x, \eta)$,

$$egin{aligned} w_{\mathsf{N},a}(t,x,\eta) &= rac{1}{2\pi}\int e^{-i\mathsf{NL}(\omega)+it\sqrt{\eta^2+\omega\eta^{4/3}}}\psi(\omega\eta^{-2/3}/a)\ & imes\eta^{2/3}\mathsf{A}i(\eta^{rac{2}{3}}x-\omega)\mathsf{A}i(\eta^{rac{2}{3}}a-\omega)d\omega. \end{aligned}$$

* For a general convex domain : no spectral decomposition to start with...

Two representations for $u(t, x, y) = \int e^{iy\eta} \chi(h\eta) w(t, x, \eta) d\eta$

 $\star a \sim h^{2/3}$: the geometry becomes irrelevant ; use gallery modes.

- For a general convex domain (Ω, g) : the range $0 < a \le h^{2/3}$ requires to properly construct the "gallery modes" and prove that their decay properties are uniform with respect to their discrete parameter.
- When 0 < a < h^{1-ϵ}: even deciding how to chose the initial data in order the Dirichlet condition to be satisfied becomes non trivial as

$$\chi_{0}(hD_{x})\chi(hD_{y})\delta_{(a,0)} = \int e^{i((x-a)\xi+y\cdot\eta)}\chi_{0}(h\xi)\chi(h\eta)d\xi d\eta = \frac{1}{h^{d}}\widehat{\chi}_{0}\left(\frac{x-a}{h}\right)\widehat{\chi}\left(\frac{y}{h}\right).$$
$$\widehat{\chi}_{0}\left(\frac{x-a}{h}\right) = O(h^{\infty}) \quad \iff a > h^{1-\epsilon}.$$

* $a \sim h^{2/3}$: the geometry becomes irrelevant ; use gallery modes. . * If $a \gg h^{2/3}$: how many terms in the sum over reflexions ?

Lemma : Let $\mathcal{N}_a(t, x, y)$ denote the set of N with "significant contributions" in $u = \sum_N u_N$ (s.t. $\sum_{N \notin \mathcal{N}_a(t,x,y)} u_N = O(h^\infty)$), then $\forall t$

$$\mathcal{N}_a(t, x, y) \subset \{N \sim t/\sqrt{a}\},$$

 $\#\mathcal{N}_a(t, x, y) \sim O(1) + O(|t|h^2 a^{-7/2}).$

- If a ≫ h^{4/7} and |t| ≤ 1 : the (u_N)_N do not "overlap much" : at fixed t, only a finite number of u_N and ||u||_{L∞} = sup_N ||u_N||_{L∞}.
- If $h^{2/3} \ll a \lesssim h^{4/7}$: estimate each u_N and sum up all terms.
- If $a \leq h^{1/2}$: gain dispersion along the tangential variable.

$$w_{\mathsf{N}} = \eta^{\frac{2}{3}} \int \boldsymbol{e}^{-i\mathsf{NL}(\omega)+it\sqrt{\eta^{2}+\omega\eta^{4/3}}} \psi(\omega/(\boldsymbol{a}\eta^{2/3})) \boldsymbol{A}(\eta^{\frac{2}{3}}\boldsymbol{x}-\omega) \boldsymbol{A}(\eta^{\frac{2}{3}}\boldsymbol{a}-\omega) \boldsymbol{d}\omega.$$

Therefore, with $\omega = \eta^{2/3} \alpha$ and $\eta = \theta/h$ we have $\theta \sim 1$, $\alpha \sim a$ and

$$u_N(t,x,y) = \frac{1}{(2\pi h)^3} \int e^{\frac{i}{\hbar} \Phi_N} \chi(\theta) \psi(\alpha/a) d\sigma ds d\alpha d\theta.$$

$$\Phi_N := \theta \left(y + t\sqrt{1+\alpha} + \frac{\sigma^3}{3} + \sigma(x-\alpha) + \frac{s^3}{3} + s(a-\alpha) - \frac{4}{3}N\alpha^{3/2} \right) + l.o.t.$$

$$w_{\mathsf{N}} = \eta^{\frac{2}{3}} \int e^{-i\mathsf{NL}(\omega) + it\sqrt{\eta^{2} + \omega\eta^{4/3}}} \psi(\omega/(a\eta^{2/3})) \mathsf{A}(\eta^{\frac{2}{3}} \mathsf{x} - \omega) \mathsf{A}(\eta^{\frac{2}{3}} \mathsf{a} - \omega) \mathsf{d}\omega.$$

Therefore, with $\omega = \eta^{2/3} \alpha$ and $\eta = \theta/h$ we have $\theta \sim 1$, $\alpha \sim a$ and

$$u_N(t,x,y) = \frac{1}{(2\pi h)^3} \int e^{\frac{i}{h} \Phi_N} \chi(\theta) \psi(\alpha/a) d\sigma ds d\alpha d\theta.$$

Let $\lambda := a^{3/2}/h \gg 1$ (as $a \gg h^{2/3}$) and $T := t/\sqrt{a} \sim N \in \mathcal{N}_a(t, x, y)$. Proposition (W1) : For $N < \lambda^{1/3}$ we have

• If $|T - 4N| \lesssim 1/N$ then $|u_N(t, x, y)| \lesssim \frac{1}{h^2} \frac{h^{1/3}}{((N/\lambda^{1/3})^{1/4} + |N(T - 4N)|^{1/6})}$.

• If
$$|T - 4N| \gtrsim 1/N$$
 then $|u_N(t, x, y)| \lesssim \frac{1}{h^2} \frac{h^{1/3}}{(1+|N(T-4N)|^{1/2})}$.

Proposition (W2) : For $N \ge \lambda^{1/3}$, we have

- If $N < \lambda$ then $|u_N(t, x, y)| \lesssim \frac{1}{h^2} \frac{h^{1/3}}{((N/\lambda^{1/3})^{1/2} + \lambda^{1/6}|T 4N|^{1/2})}$.
- If $N \ge \lambda$ then $|u_N(t, x, y)| \lesssim \frac{1}{h^2} \frac{h^{1/3} \sqrt{\lambda/N}}{(N/\lambda^{1/3})^{1/2}}$ (gain due to integration in θ).

• If
$$a > h^{1/3}$$
 we always have $N \lesssim \lambda^{1/3}$.

The sharp bounds for u_N yield dispersion and better Strichartz

Theorem : [I. '20]) (long time dispersion for waves, Klein-Gordon) If $(\partial_t^2 - \Delta_F + m^2)u^m = 0$ in Ω_d , $m \in \{0, 1\}$ with data $(u_0, u_1) = (\delta_{(a,0)}, 0)$,

$$\chi(h\sqrt{-\Delta_F})u^m(t,\cdot)| \lesssim \frac{1}{h^d}\min\left\{1,\left(\frac{h}{|t|}\right)^{\frac{d-1}{2}-\frac{1}{4}}\right\}.$$
 (1)

Let $\phi \in C_0^{\infty}((-2,2))$ equal to 1 on $[0,\frac{3}{2}]$.

$$|\phi(\sqrt{-\Delta_F})u^{m=0}(t,\cdot)| \lesssim \min\left\{1,\frac{1}{|t|^{\frac{d-1}{2}}}\right\}.$$
(2)

$$\phi(\sqrt{-\Delta_F})u^{m=1}(t,\cdot)| \lesssim \min\left\{1,\frac{1}{|t|^{\frac{d-1}{2}-\frac{1}{6}}}\right\}.$$
(3)

Theorem : ([I., Lebeau & Planchon, '20]) Strichartz estimates hold true on (Ω_2, g_F) for (q, r) such that

$$\frac{1}{q} \le \left(\frac{1}{2} - \frac{1}{9}\right) \left(\frac{1}{2} - \frac{1}{r}\right)$$

In particular, $\alpha_{W,d=2} \ge \frac{d-1}{2} - \frac{1}{9}$; for $r = +\infty$, we have $q \ge 5 + 1/7$.

Remark : For d = 2, Strichartz estimates with $\alpha_{W,2} \ge \frac{1}{2} - \frac{1}{6}$ had been proved by [Blair, Smith & Sogge, '08]) for arbitrary boundary (no convexity assumption).

Theorem : ([I., Lebeau & Planchon, '20]) Strichartz estimates may hold true on (Ω_2, g_F) only if

$$\frac{1}{q} \le \left(\frac{1}{2} - \frac{1}{10}\right) \left(\frac{1}{2} - \frac{1}{r}\right) \,. \tag{4}$$

In particular, for $r = +\infty$, we have $q \ge 5$. This happen for $a \sim h^{1/3}$.

<u>Idea of proof</u> : let $\lambda = \frac{a^{3/2}}{h} \gg 1$, $a \gtrsim h^{1/2}$ and set, for some large $1 \ll M \ll \lambda$

$$w|_{t=0}(x,\theta/h) = \int e^{i\lambda\theta((x/a-1)\sigma+\sigma^3/3+i\sigma^2/M)}d\sigma, \quad \theta \sim 1.$$

$$w|_{t=0}(0,\theta/h) = \frac{2\pi}{(\lambda\theta)^{1/3}} e^{-\frac{\lambda\theta}{2M}(1-\frac{2}{3}\frac{1}{4M^2})} Ai\left((\lambda\theta)^{2/3}(-1+\frac{1}{4M^2})\right) = O(\lambda^{-\infty}).$$

Explicit L^2 norms : $||u_0||_{L^2(\Omega_2)} \lesssim (M/(\lambda a))^{1/4}$. $\forall |t| \lesssim 1, \exists ! N = [\frac{t}{4\sqrt{a}}]$ such that $u(t, x, y) = u_N(t, x, y) + O(\lambda^{-\infty})$ $|u(4N\sqrt{a} + t, a, y_N)| \sim \frac{2\pi}{\lambda^{1/3}} |Ai(0)|$ on a time interval of size $\frac{\sqrt{a}}{M}$ yields $||u||_{L^q((0,M),L^\infty(\Omega_2))} \gtrsim a^{1/(2q)} \lambda^{-1/3}$. Take $M \sim \lambda^{1/3}$.

Picture for Strichartz in convex domains

<u>Semi-classi</u>cal Schrödinger equation in (Ω_d, g_F)

Theorem : ([I.'20]) The solution to $ih\partial_t v + h^2 \Delta_F v = 0$, $v|_{\partial\Omega_d} = 0$ with data $v_0(x, y) = \chi(hD_y)\delta_{x=a,y=0}$ satisfies, for $h < |t| \lesssim 1$

$$\|\chi(hD_t)v(t,\cdot)\|_{L^{\infty}(\Omega_d)} \lesssim \frac{1}{h^d} \left(\frac{h}{|t|}\right)^{\frac{d}{2}-\frac{1}{4}}.$$
(5)

 $\forall \sqrt{a} < |t| \leq 1$ and every $|t| h^{1/3} \ll a < 1$, the bound saturates, as

$$\|\chi(hD_t)v(t,\cdot)\|_{L^{\infty}(\Omega_d)} \sim \frac{a^{\frac{1}{4}}}{h^d} \left(\frac{h}{|t|}\right)^{\frac{d}{2}-\frac{1}{4}}.$$
(6)

Corollary : Strichartz estimates hold for $\frac{1}{a} \leq \left(\frac{d}{2} - \frac{1}{4}\right) \left(\frac{1}{2} - \frac{1}{r}\right)$.

Remark : one gallery mode ($a \leq h^{2/3}$) yields a loss of $\frac{1}{6}$ in Strichartz for Schrödinger. [Blair, Smith & Sogge '11], Ω compact : $\frac{1}{a} \leq \left(1 - \frac{1}{3}\right) \left(\frac{1}{2} - \frac{1}{r}\right)$ for d = 2; $\frac{1}{a} \leq \left(\frac{d}{2} - \frac{d-2}{2}\right) \left(\frac{1}{2} - \frac{1}{r}\right)$ for $d \geq 3$.

Worst regime for Strichartz seems to be $a \sim h^{1/2}$.

Same construction as for waves + Kanaï transform

In the same way, for d = 2, $v = \sum_{N} v_{N}$ where

$$v_{\mathsf{N}}(t,x,y) = \frac{1}{(2\pi h)^3} \int e^{\frac{i}{\hbar} \tilde{\Phi}_{\mathsf{N}}} \chi(\theta) \psi(\alpha/a) d\sigma ds d\alpha d\theta,$$

$$\tilde{\Phi}_{N} := \theta \left(y + t\theta(1+\alpha) + \frac{\sigma^{3}}{3} + \sigma(x-\alpha) + \frac{s^{3}}{3} + s(a-\alpha) - \frac{4}{3}N\alpha^{3/2} \right) + l.o.t.$$

* Stationary phase w.r.t. θ yields $(h/|t|)^{1/2}$ and forces $|y| \sim 2|t|$.

 \star Critical value of the phase after stationary phase w.r.t. θ, α :

$$\begin{split} \tilde{\Phi}_{N}|_{\theta_{c},\alpha_{c}} &= -\frac{y^{2}}{4t} - \frac{y}{2t} \Big[\frac{s^{3}}{3} + sa + \frac{\sigma^{3}}{3} + \sigma x - \frac{1}{12N^{2}} \Big(\frac{y}{2} + s + \sigma \Big)^{3} + l.o.t. \Big]. \\ \text{Recall } \Phi_{N}|_{\alpha_{c}} &= \theta \Big[y + \frac{s^{3}}{3} + sa + \frac{\sigma^{3}}{3} + \sigma x - \frac{1}{24N^{2}} \Big(\frac{t}{2} - s - \sigma \Big)^{3} + l.o.t. \Big]. \end{split}$$

Proposition (S1) : For $N < \lambda^{1/3}$, $N \sim Y := y/\sqrt{a}$, we have $\forall t$

• If $|Y - 4N| \leq 1/N$, then $|v_N(t, x, y)| \leq \frac{1}{h^2} (\frac{h}{|t|})^{1/2} \frac{h^{1/3}}{((N/\lambda^{1/3})^{1/4} + |N(Y - 4N)|^{1/6})}$.

• If
$$|Y - 4N| \gtrsim 1/N$$
, then $|v_N(t, x, y)| \lesssim \frac{1}{h^2} (\frac{h}{|t|})^{1/2} \frac{h^{1/3}}{(1+|N(Y-4N)|^{1/2})}$.

* If
$$th^{1/3} \leq a$$
 then $\frac{t}{\sqrt{a}} \sim N \leq \lambda^{1/3} = \frac{\sqrt{a}}{h^{1/3}} \Rightarrow \forall t$, at $(x, y) = (a, 4N\sqrt{a})$:
 $|v(t, a, 4N\sqrt{a})| = |v_N(t, a, 4N\sqrt{a}) + \sum_{M \neq N} v_M(t, a, 4N\sqrt{a})|$
 $= \frac{1}{h^2} (\frac{h}{|t|})^{1/2} (\frac{h^{1/3}}{(N/\lambda^{1/3})^{1/4}} + O(h^{1/3}))$
 $\sim \frac{1}{h^2} (\frac{h}{|t|})^{1/2} (a\frac{h}{|t|})^{1/4}.$

Proposition (S2) : For $N \ge \lambda^{1/3}$, $N \sim Y := y/\sqrt{a}$, we have

 $|v_N(t, x, y)| \lesssim \frac{1}{\hbar^2} (\frac{h}{|t|})^{1/2} \frac{h^{1/3}}{((N/\lambda^{1/3})^{1/2} + \lambda^{1/6}|Y - 4N|^{1/2})} .$

 \star If $th^{1/3} \gtrsim a$ then $N \gtrsim \lambda^{1/3}$ and

$$\|\sum_{N} v_N(t,\cdot)\|_{L^{\infty}(\Omega_2)} \lesssim \frac{1}{h^2} \left(\frac{h}{|t|}\right)^{1/2} \left(\frac{ht}{a}\right)^{1/2}$$

which forces $a \gtrsim (ht)^{1/2}$.

- ► For $a \leq (ht)^{1/2}$ the spectral sum yields $|v(t, \cdot)| \leq \frac{1}{h^2} (\frac{h}{|t|})^{1/2} a^{1/2}$.
- When a ~ (ht)^{1/2} ⇐⇒ N ~ λ ⇒ seems to be the most difficult case.

Open problems

►

- diffractive effects for higher order tangency points : if the ray has infinite order tangency with the boundary, even deciding what should be the continuation of a ray striking the boundary is difficult... (see [Taylor, 1976])
- general bounded domains: significant difficulties when curvature changes its sign :
 - * exhibit the separation of wave packets ;
 - * classify the type and order of caustics that may appear;
 - * saddle like boundary ; NO canonical model to start with.
- exterior domains : clarify <u>if and how</u> non-trapping rays help improving dispersive effects at large time scales;
- concentration of Laplace eigenfunctions (spectral projectors estimates);

MERCI !