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Mathematical description of waves, at least to first
approximation, is the same in many different settings.

» The (scalar) wave equation

d

o d . 92
<ﬁ—A)u:0 on R xRY WlthA:;anz.

» A close relative is the Schrodinger equation (especially
in the "semi-classical” setting h — 0) :

iho;v + PAv=0 on R xRY.
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Dispersive decay is a quantitative version of this picture.



My main contributions

» Inside convex domains: Schrodinger & wave equations
- optimal dispersive estimates (for both equations) :

* approximate solutions going over infinitely many caustics;

* sharp pointwise bounds for the Green function;

* long time estimates in the Friedlander domain for wave and
Klein-Gordon equations.

- Strichartz estimates : positive results (better than expected
from dispersion) and counterexamples (worst than without
boundary)

» In exterior domains: Schrddinger & wave equations
- sharp dispersion in 3D, sharp Strichartz for Schrédinger VD;
- counterexamples to dispersion in higher dimensions D > 4:
* highlight strong diffractive effects.



Dispersive decay : dispersive and Strichartz estimates

The dispersive estimates measure the uniform decay properties of
the evolution flow as a function of time.

» The wave flow : h € (0,1), x € C3°(1/2,2)

<amn {1 (7))

» The semi-classical Schrédinger flow (for t > h)

sup’x (hDy)e™"IV =54 (65,

d
2

< fmin{1.(2)7).

Qy = the source point, t = the elapsed time, 1/h = the frequency.

sup (X(th)ei’%Aw(oo )

For waves, this holds in R? or on manifolds without boundary
as long as time is less than the injectivity radius.



The Strichartz estimates measure average decay (L2 data).
Admissible indices (g,r) : q,r > 2, (q,r, o) # (2,00,1), (17 <a(F - .

> for the wave flow : (8% — A)u =0, Ult=o = Uo, Otll|—0 = U

d—a)(4 -1
A== D (D) ull ago,m,ip) S IlUoll 2 + [l us | 2.
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(g, r) is a wave-admissible pair
if aw,g = %5 .
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» for the semi-classical Schrédinger : ihdiv + AV =0, v]i—o = W

d—a)(-1
pld=a)(z r)HX(th)VHLQ([o,T],L;) S [Ivoll 2.

Vay 1ay
I d=2 " ¢=3

(g,r) is a Schrodinger-
admissible pair if ag g = 3.
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R with flat metric (wave and Schrddinger): Strichartz, Pecher, Ginibre-Velo, Lindblad-Sogge, Keel-Tao...
9 = ( (wave): Kapitanski, Mockenhaupt-Seeger-Sogge, Smith, Bahouri-Chemin, Tataru...

9 = 0 (Schrédinger): Staffilani-Tataru, Burg-Gérard-Tzvetkov...



Overall view of the mathematical challenges

Goal :

» Study wave dispersion and concentration near a boundary
(in highly non-trivial geometries)

» Develop new tools (efficient wave packets methods,
sharp quantitative refinements of propagation of singularities, etc);

» Apply to nonlinear problems, control theory, etc.



Approximate solutions in domains with boundary

~ 1980 : Boundary problems and propagation of singularities
- available approximate solutions Melrose-Taylor, Eskin
- or microlocal energy methods Melrose-Sjéstrand, Ivrii

» do NOT provide an accurate description of the amplitude of the
wave ... have NO use in obtaining dispersion

» do NOT capture the separation of optimal wave packets




Geometry of the wavefront

Propagation of a spherical wave: singularities
are located on the sphere of radius ¢, cen-
tered at the source point (like in the picture).

If non-empty boundary: the "sphere” of radius t = WAVEFRONT
may undergo dramatic changes compared to the flat case !

N\

Part of the wavefront near a point of
strict convexity after only 5 reflections.

source

> Possible dispersive estimates should reflect the geometry of the domain and
especially its boundary.



* The wavefront inside a convex : the "sphere” of radius t soon
degenerates and develops singularities in arbitrarily small times.

The wave shrinks
in size between two
consecutive reflections
and its maximum
increases.

domain : caustics
appear between

’ Geometry of the

. WF after only
two consecutive

reflections.

* Near a concave boundary : rays can stick to the boundary and
re-release energy near the "shadow region”, producing diffractive
effects (e.g. the Poisson-Arago spot).

shadow with
image due
to diffraction
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State of the art in 2010 : general domains

* Q =R\ ©, © non-trapping, Ap : Burg-Gérard-Tzvetkov, Robbiano-Zuily
(in connection with local smoothing or local energy decay)

* Q compact, 9Q # 0 : Smith-Sogge, Koch-Tataru, Anton, Blair-Smith-Sogge, etc

= reduction to the boundary-less case with Lipschitz metric across
an interface :

» may handle any boundary (higher order tangency points ...)

» BUT blind by design to the full effect of dispersion !
(reduces to wave packets that cross the boundary only once)




Dispersion in the exterior of a ball

Theorem : ([I. & Lebeau], 2020) Let Q4 = R? \ By(0, 1).

» If d = 3, the dispersive estimates for the wave and Schrédinger
equations inside Q3 with Dirichlet condition hold true.

> If d > 4, these estimates fail at the Poisson-Arago spot .

* Recall : Strichartz (without loss) for waves [Smith & Sogge, 1995]
and for Schrédinger [I., 2010]. For dispersion, [Li,Smith & Zhang,
2012] outside a ball, only for spherically symmetric data.

* For d > 4 = first example of a domain on which global Strichartz
estimates do hold like in R? while dispersion fails.

* A loss in dispersion occurs only for obstacles which "look very
much” like a sphere (at least viewed from specific locations).

* For wave and Schrodinger equations, the mathematical
landscape is now well understood.



Diffraction ???

N 7 shadow boundary

4 NS

Theorem: ([Hargé & Lebeau], 1994 - Keller’s theorem for C> boundary) The

decreasing rate in the shadow region is of the form e’ c= C(09),
T ~ frequency.
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Estimates at the Poisson spot
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if Q+(r) = source / observation points at (same) distance r from the ball,
symmetric w.r.t. the center of the unit ball B4(0, 1) of R?, then

> Wave flow: take r ~ h™ /%, t ~ 2~ 1/3

Qs
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ioh—1/3 1 h Tz, d=8
oDy VI Ga )| (@) ~ 1 (557 )

» (classical) Schrédinger flow: take r ~ h='/¢ t ~ h'/3

|((hD)e" 2 (6. )[(@:) ~ (1)~ En="F



Construction of a parametrix outside a convex in 3D

* If the source Qq is "far” and the observation point Q is "close” to 992

> use [Melrose-Taylor], [Zworski] : yields a parametrix for Q near the
apparent contour of Qg (see [Smith-Sogge, 1995], [Zworski, 1990]).

Theorem [Melrose & Taylor], [Zworski] : 36, ¢ phase functions near a
glancing point, 3 pg, p1 symbols (with pg elliptic, p1]|aq = 0) s.t.
for every solution V to (72 +A)V € Oc-(7~>) 3IF s.t.

V(r,Q,Q) = T-(F), Q near the glancing point,
T

T(F)Q@) = (5-) [ &70@n (posi 4 py A7) (22¢(Q. ) E(rn)eln

> apply to V = Uee(7, Q, Qo) = 57576 "9 @l and find F ;

» replace F then use it to bound the "outgoing wave”

2 . Ai N
(32)7 ] @ [PoAc(r2/20) 4y A (20| 22 Clon)Frmdln



Construction of a parametrix outside a convex in 3D

* |f the source Qy and the observation point Q are "far” from 0Q

» Reduce the problem to obtaining estimates for

(OnUtreeloa — N(Usreelan))(t — |Q — PJ, P, Qo)

u(t, Q, =
( 7Q OO) a0 47T‘P— QI

do(P).

» use NOW [Melrose-Taylor] to obtain
(OnUseelon — N(Ugeelon))(t, P, Qo) in terms of Airy functions for P
near the apparent contour of Q.

» higher dimensions : for the Poisson spot, rotational symmetry.

» for a general concave boundary finding F doesn’t help...



Construction of a parametrix outside a convex in 3D

* If Qp and Q are "very close” to 0) : [Melrose-Taylor] not available

» use spherical harmonics Y}, ; (eigenfunctions of —Ag) to obtain

M(BDYU(t, Q. Q) = 3= 2% (i) [ & x(h) G110, |G e,
0

m Imi1/2(7)
Gmy1y2(r,s,7) = 217\/% (Jm+1/2(37—)_l_;?1+)7/(7_)Hr(r31/2(ST)) Hr(r:l1/2(r7_)a
m+1/2

» most delicate situation : 7/m = 1 + O(m~2/3) when

Hr(r:lwzs Jm+1/2 read in terms of Ai(72/3¢) (same as in

[Melrose-Taylor] | = discrete sum instead of integral formula)

* for Schrodinger equation : use the Kanai transform

* for small frequencies : use the exterior Dirichlet problem for the Helmholtz
equation and acoustic surface potentials for general C? boundaries.



Convex boundaries

Theorem: ( [I., Lebeau & Planchon, '14]; [I., Lascar, Lebeau & Planchon, '20])

Let (2, g) be a strictly convex domain; Q, € Q at distance a > 0 from
09, dq, = Dirac at Q. The Dirichlet wave flow satisfies, for h < |t| < 1

(@—1)

||X(hD’)eﬁ‘/_Tg(5Oa)|L°°(n)§,:d(a) ’ [aj’*(h/ltl)‘l‘+(h/\t\)*%]

» The result is optimal because of the presence of swallowtail
singularities in the wave front set.

» First result describing exactly the amplitude of the wave over
infinitely many reflections



Model for convex boundaries

Model domain:
Q2 ={(x,y) €R?|, x>0,y € R}
AF = 8)2; + (1 +x)8§

Disk: r < 1
Agisk = 02 + 505

x>0

Model domain

Disk

Same to firstorderunderr =1 —x/2,0 = y.



Model for convex boundaries

Model domain:
Q2 ={(x,y) €R?|,x >0,y € R}
AF = 8)2( + (1 +X)a§

Disk: r <1
Agisk = 02 + 505

x>0

Model domain

Disk

x The operator —92 + (1 + x)n? has eigenfunctions and eigenvalues:
ni/3

ex(x,n) = 7Ai(772/3x - wk) associated to A\ () = n? + wxn*/?
L' (wk)

* (ex)k>1 forms an L2(0, c0) orthonormal basis, Ai(—wg) = 0.



Airy function A/"(z) = ZAi(z)
» Integral formula : Ai(—z 1 [ gile*/3=20)

223

Ai(-z)=A (2)*A (2) Ai(z)~z"e

23
WK ~ K

> Let L(w) =7+ ilog 4 = where As(w) ~ w3/4ei§"“%. Then

L(w) = gw% +5- O(W7%)7 L'(w) = / AP (X — wy) dx..
0
» "Airy-Poisson” formula :

ZWZ L/ » wk Z/ —iNL(w

keN* NeZ

e~ NL(w) — (1) (;LEZ)))N



Parametrix for 02u — (0% + (1 +x)95)u=0forx > 0,y € R, Ulx—0 =0

> Seek u(t,x,y) = [ &""x(hn)w(t, x,n)dn, x € C5°(3,2), he (0,1),
Fw— (85 —(1+x)°)w=0, w|x—=0.

> If w]io € L2(0, 00),
W(t7X,’I’]) = Z eit Ak(n)ek()ﬂ 77) < ek('ﬂ?)7 W|I:0 >L2(0,oo) :
k>1
> Dirac distribution : dx—a = >4~ (X, n)ex(a,n), Vn # 0.
> Let wli—o(x,n) = X(hV—AF)dx=a,
c/h
w(t,x,n) =Y _ Ve (x,n)e(an).
k=1
» Localize w.rt. (—92/n% + x) : as (=82/n° + x)ex = wkn 2 2ex
C/h
t‘<(f(')f/l/2+x)/ ) w(t,x,n) Z (X, n)ex(a,n) (w77
k=1

/a).



Worst packet : x + (¢/n)? ~ a, small angle |¢/n| < Va

Introducing /(w2

°/a) reduces the sum to

2/3
a(t, X, ) Z gtV 77 Ai(n%X —wk)Ai(n%a

—wk).
= L' (wk)

As wy ~ k?/3, 1 ~ 1/h = the sum reduces to k ~ \ :— &/

.
* If a < h?/3 then X < 1 : bounded number of “gallery modes”.

Using Airy-Poisson formula for wy @ wa(t, X,n) = > ney Wh,a(t, X, 1),

1 —iNL(w)+ii 21 on/3 vy
W/\/ya(f7 X,n) = o /e INL(w)-+it\/n?+wn (wn 2'3/8)
<123 Ai(nt x — w)Ai(n} a — w)duw.

* For a general convex domain : no spectral decomposition to start with...




Two representations for u(t, x,y) = [ e¥"x(hn)w(t,x,n)dn

x a~ h?/? : the geometry becomes irrelevant ; use gallery modes.

» For a general convex domain (2, g) : the range 0 < a < h?/° requires to
properly construct the “gallery modes” and prove that their decay
properties are uniform with respect to their discrete parameter.

» When 0 < a < h'~ : even deciding how to chose the initial data in
order the Dirichlet condition to be satisfied becomes non trivial as

i((x— . 1 __/x—a\_/y
Xo(hD(Dy )00y = [ &= Dxo(he)(m)decin = 150 (*5-2)x(2)

?o(X;a> =0(h®) <= a>h'"*.



Two representations for u(t, x,y) = [ e¥"x(hn)w(t,x,n)dn

x a ~ h?/3 : the geometry becomes irrelevant ; use gallery modes. .
x If a > h?/3 . how many terms in the sum over reflexions ?
Lemma : Let Ny(t, x, y) denote the set of N with "significant

contributions” in u = 3"y Un (S:t. 3 ng nex,y) Uv = O(h™)), then Vi

Na(t,x,y) C {N ~ t//a},
#Na(t, x,y) ~ O(1) + O(|t|*a "/?).
» If a > h*/7 and |t| <1 :the (un)y do not “overlap much” : at
fixed ¢, only a finite number of uy and ||u|| - = supy ||Un]|| -

» If i?/° < a< h*/7 . estimate each uy and sum up all terms.

» If 2 < h'/? : gain dispersion along the tangential variable.



Wy = ]}g ] efl'NL(uu)Jri[\ n2+wn?/3

Therefore, with w = n*/%a-and n = 6/h we have 6 ~ 1, o ~ a and

un(t, x,y) = (27:7/7)3/ Nx(6)(e/a)dodsdadb.

0'3 33 4 3/2
by ::0(y+t\/1 +a+€+a(x—a)+§+s(a—a)— §NOC ) + lo.t.

008 —
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Wy = ]}g ] efl'NL(uu)Jri[\ n2+wn?/3

Therefore, with w = n*/%a-and n = 6/h we have 6 ~ 1, o ~ a and

un(t, x,y) = (27:7/7)3/ Nx(6)(e/a)dodsdadb.

Onlae = 0[y + = § +sa+ 33 +ox - 241N2 (é —s—a)3+/Ao.t.}.

. 2 . . .
amplitude (x h°) swallowtail singularity
1 —
X vl
""\"\
N

L b 4

4\ W\ AR
t=h . \ o N AR ><7C‘L\ 1

rr
o N\
o




Wi

— ,}% / e INL(w)~+ity/n2+wn*/3

Therefore, with w = n?/°aand y = §/hwe have 0 ~ 1, o ~ aand

un(t, x,y) = (27:7,7)3/eﬁ.@"’x(G)z'(u/a)dadsdade.

Let \:=a"?/h>1(asa> h/®and T :=t/\/a~ N e Na(t, x, y).
Proposition (W1) : For N < A'/® we have

1/3
> lf ‘Tﬁ 4N‘ S/ 1/Nthen |UN(t7X7y)| S ’:7((N/A1/3)1/4’:—\N(T—4N)|1/6) .

1/3
> I [T — 4N| 2 1/N then [un(t, X, V)| S 3% Geen 72

Proposition (W2) : For N > \'/°, we have

h1/3
> If N < Athen |un(t, x, ¥)| < #((N/)\1/3)‘/2+)\1/6\T—4N\1/2) )

1 h'/8

> If N> Xthen |un(t, x,y)| < h2W

(gain due to integration in 6) .

» Ifa> h'/® we always have N < A'/3.



The sharp bounds for uy yield dispersion and better Strichartz

Theorem : [I. '20]) (long time dispersion for waves, Klein-Gordon)
If (97 — Ar + m?)u™ = 0in Qq, m € {0,1} with data (uo, t1) = (J(a,0),0),

m . hy\ % i
(V=B8R S gemin {1 (7) * - (1)
Let ¢ € C5°((—2,2)) equal to 1 on [0, 3.
[6(v/~BAu™0(t, )] < min {1, |t|1} @
l6(v/—Br) U™ (8,-)] < min {1“(,111} 3)

Theorem : ([I., Lebeau & Planchon, '20]) Strichartz estimates hold true on
(€22, gr) for (g, r) such that

a=(ze)(z7)

In particular, aw,qg—2 > 95+ — &;for r = 400, we have g > 5+ 1/7.

Remark : For d = 2, Strichartz estimates with aw > > ; — & had been proved

by [Blair, Smith & Sogge, '08]) for arbitrary boundary (no convexity assumption).



Go back to the parametrix and chose a different data w/|;—o(x,7), hn ~ 1

Theorem : ([I., Lebeau & Planchon, '20]) Strichartz estimates may hold true on

(2, gr) only if
1 1 1 1 1
ez ) (z7) @

In particular, for r = 400, we have g > 5. This happen for a ~ h'/%.

Idea of proof : let A = £2° > 1, 2 > h'/2 and set, for some large 1 < M < A

wli=o(x, 0/h) = / VAN ST M gy d,

2 ,ﬁ _2
Wli-0(0,0/h) = e 815 4i((0)2/3(—1 + — 0(A ).

0)73° )

Explicit L% norms : [|uo | 2(q,) < (M/(Xa))"/*.
V[tl $ 1,3 N = [37z] such that u(t, x, y) = un(t, X, y) + O(A™%)

|u(4Nva+t, a,yn)| ~ m/a |Ai(0)| on a time interval of size ﬁ yields
HUHLQ((O_M).LDL(QZ)) Z a‘/(2‘7)>\ 1/3. Take M ~ )\1/3.



Picture for Stric
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Semi-classical Schrodinger equation in (Qq, grF)

Theorem : ([1.20]) The solution to ihd;v + PPAFv = 0, Vl|aq, = 0 with
data vo(x,y) = x(hDy)dx—ay—o satisfies, for h < [t| < 1
1 /h\%8:
IXChDV(E i@ S 7 () (5)
Vva<|t| <1andevery |t|h'/3 < a < 1, the bound saturates, as

)
2

ai [ hy%-%
Ix(hDe)v(t, )l Lo (q) ~ ﬁ(m> . (6)

Corollary : Strichartz estimates hold for 15 < (%‘%) (15 — }) )

Remark : one gallery mode (a < h?/3) yields a loss of % in Strichartz for Schrédinger.
[Blair, Smith & Sogge ’11], Q2 compact :

I< (17%)(%—;) ford=2;1< (%%)(%—‘7) ford > 3.

Worst regime for Strichartz seems to be a ~ h'/2.



Same construction as for waves + Kanai transform

In the same way, for d =2, v =", vy where

Wt X y) = / er®\(0) (o /a)dodsdadd,

(2rh)e
. 3 3 4
by = 0(y+10(1 + )+ Tto(x—a)+ 2 +s(a—a)- ZNa®?) + Lo

» Stationary phase w.r.t. 4 yields (h/|t|)'/? and forces |y| ~ 2|t|.

* Critical value of the phase after stationary phase w.r.t. 4, o :

53 0.3 y 3
3

s o 1/t 3
Recall ®p|a, :9[y+§+sa+§+axfw(§ ,S,G> +/.o.t.].



Proposition (S1) : For N < \'/3, N ~ Y := y/+/a, we have vVt
> If Y —4N| < 1/N, then |vn(t, x, )| S 72 ()%

t]

h1/3
((N/XT73)TTA4IN(Y—4N)[1/8) -
/3
(1+IN(Y—4N)|1/2)

> If |Y —4N| 2 1/N, then |w(t, x,¥)| S ()"

«If th'/2 < athen &~ N S A1/° = ¥& = vt at (x,y) = (a,4NVa):

v(t,a,4NVa)| = |w(t,a, 4Nva) + > vi(t,a, 4NVa)|
M#£N

— l(ﬁy Z(L

T OR2 m (N/)\1/3)1/4

1 h g h\1/4
~ )" (2)

+O(h'/?))



Proposition (S2) : For N > \'/3, N ~ Y := y/\/a, we have

h\1/2 h'/3
> |VN(t X y)| ~ hz(m) / (N/XT73)T723 2176 Y—4aN[1/2) *

% If th'/3 > athen N > \'/% and

||ZVN

which forces a > (ht)'/2.

1 h ht\1/2
- < 1/2
HL (22) ~ (‘t‘) (a>

V(t ) S 5 (5) a2,

-l
h

> Whena~ (ht)'/? <= N~\= o/
seems to be the most difficult case. g J "

(afh)m

Lid
(gharp for

Qg
: (a/hy
» For a < (ht)'/? the spectral sum yields W : \ )

\ ay™
a 1]

dispersion)



Open problems

» diffractive effects for higher order tangency points : if the ray has infinite
order tangency with the boundary, even deciding what should be the
continuation of a ray striking the boundary is difficult... (see [Taylor, 1976])

» general bounded domains: significant difficulties when curvature
changes its sign :

* exhibit the separation of wave packets ;
= classify the type and order of caustics that may appear;
* saddle like boundary ; NO canonical model to start with.

» exterior domains : clarify _if and how non-trapping rays help improving
dispersive effects at large time scales;

» concentration of Laplace eigenfunctions (spectral projectors estimates);

MERCI !



